• Title/Summary/Keyword: co-anion

Search Result 265, Processing Time 0.035 seconds

Effect of Superoxide Dismutase on the Release of [$^3H$]-5-Hydroxytrytamine after Hypoxia from Rat Hippocampal Slices (흰쥐 해마 절편에서 저산소증에 의한 [$^3H$-5-Hydroxytrytamine의 유리 변동에 미치는 superoxide dismutase/catalase의 영향)

  • 이경은;박월미;배영숙
    • Toxicological Research
    • /
    • v.13 no.4
    • /
    • pp.359-365
    • /
    • 1997
  • Many factors are known to be responsible for cerebral ischemic injury, such as excitatory neurotransmitters, increased intraneuronal calcium, or disturbance of cellular energy metabolism. Recently, oxygen free radicals, formed during ischemia/reperfusion, have been proposed as one of the main causes of ischemia/reperfusion injury. Therefore, to investigate the role of oxygen free radical during ischemia/reperfusion, in the present study the effect of endogenous oxygen free radical scavenger, superoxide dismutase / catalase(SOD / catalase) on the release of [$^3$H]-5-hydroxytryptamine([$^3$H]-5-HT) during hypoxia/reoxygenation in rat hippocampal slices was measured. The hippocampus was obtained from the rat brain and sliced 400 gm thickness with manual chopper. After 30 min's preincubation in the normal buffer, the slices were incubated for 20 min in a buffer containing [$^3$H]-5-HT(0.1 $\mu$M, 74 $\mu$Ci) for uptake, and washed. To measure the release of [$^3$H]-5-HT into the buffer, the incubation medium was drained off and refilled every ten minutes through a sequence of 14 tubes. Induction of hypoxia for 20 min (gassing it with 95% N$_2$/5% CO$_2$) was done in the 6th and 7th tube, and oxygen free radical scavenger, SOD / catalase was added 10 minutes prior to induction of hypoxia. The radioactivity in each buffer and the tissue were counted using liquid scintillation counter and the results were expressed as a percentage of the total activity. When slices were exposed to hypoxia for 20 min, [$^3$H]-5-HT release was markedly decreased and a rebound release of [$^3$H]-5-HT was observed on the post-hypoxic reoxygenation period. SOD / catalase did not changed the release of [$^3$H]-5-HT in control group, but inhibited the decrease of [$^3$H]-5-HT release in hypoxic period and rebound increase of [$^3$H]-5-HT in reoxygenation period. This result suggest that superoxide anion may play a role in the hypoxic-, and reoxygenation-induced change of [$^3$H]-5-HT release in rat hippocampal slices.

  • PDF

A rapid determination of chloride in saturated paste extracts of salt-affected soils using EC change upon AgCl precipitation (AgCl 침전 전후 전기전도도 변화를 이용한 염해지 포화침출액의 염소 이온 신속 정량)

  • Lee, Yehun;Kim, Jeeyoon;Lee, Jeongsu;Pros, Khok;Park, Jee Won;Han, Gwang Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.279-282
    • /
    • 2017
  • Chloride is known as the most important anion in salt-affected soils. We observed the degree of EC change upon AgCl precipitation was quantitatively related with the chloride concentration. Method validation and intercomparison with ion chromatography revealed the proposed method can provide rapid and moderately precise chloride concentrations in salt-affected soils.

Organopalladium(II) Complexes as Ionophores for Thiocyanate Ion-Selective Electrodes

  • Kim, Dong-Wan;Lee, So-Hyun;Kim, Jung-Hwan;Kim, Jin-Eun;Park, Jong-Keun;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2303-2308
    • /
    • 2009
  • A thiocyanate poly(vinyl chloride) (PVC) membrane electrode based on [1,2-bis(diphenylphosphino)ethane]dihalopalladium( II), [(dppe)$PdX_2$, X = Cl ($L^1$), X = I ($L^2$)] as active sensor has been developed. The diiodopalladium complex, [(dppe)$PdI_2](L^2$) displays an anti-Hofmeister selectivity sequence: $SCN^-\;>\;I^-\;>\;{ClO_4}^-\;>\;Sal^-\;>\;Br^-\;>\;{NO_2}^-\;>\;{HPO_4}^-\;>\;AcO^-\;>\;{NO_3}^-\;>\;{H_2PO_4}^-\;>\;{CO_3}^{2-}$. The electrode exhibits a Nernstian response (-59.8 mV/decade) over a wide linear concentration range of thiocyanate ($(1.0\;{\times}\;10^{-1}\;to\;5.0\;{\times}\;10^{-6}$ M), low detection limit ($(1.1\;{\times}\;10^{-6}$ M), fast response $(t_{90%}$ = 24 s), and applicability over a wide pH range (3.5∼11). Addition of anionic sites, potassium tetrakis[p-chlorophenyl] borate (KTpClPB) is shown to improve potentiometric anion selectivity, suggesting that the palladium complex may operate as a partially charged carrier-type ionophore within the polymer membrane phase. The reaction mechanism is discussed with respect to UV-Vis and IR spectroscopy. Application of the electrode to the potentiometric titration of thiocyanate ion with silver nitrate is reported.

Catalytic Performance of Ionic Liquids in the Synthesis of Glycerol Carbonate from Glycerol and Urea (글리세롤과 요소로부터 글리세롤카보네이트 합성에서 이온성액체의 촉매 특성)

  • Kim, Dong-Woo;Park, Kyung-Ah;Kim, Min-Ji;Park, Dae-Won
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.347-351
    • /
    • 2013
  • The preparation of glycerol carbonate (GC) from urea through carbonylation with renewable glycerol was investigated by using ionic liquid catalysts. It was found that quaternary ammonium salt and imidazolium salt ionic liquids with a shorter alkyl chain length and higher nucleophilic anion showed better catalytic performance. The effects of reaction temperature, reaction time and degree of vacuum on the reactivity of TBAC catalyst ware discussed. Zinc chloride ($ZnCl_2$) was used as co-catalyst with the ionic liquid catalyst. The mixed catalyst showed a synergy effect on the glycerol conversion and GC yield probably due to the acid-base properties of the catalysts.

Determining Method of Sulfites in Foods by Ion Chromatography

  • Kim, Myung-Hee;Chae, Young-Zoo
    • Journal of Food Hygiene and Safety
    • /
    • v.3 no.4
    • /
    • pp.211-215
    • /
    • 1988
  • Anion chromatographic (lC) method was developed for the determination of sulfites infoods. Sulfites refer to sulfur dioxide that was separated from a food sample by addition of acid and heating, and carried into a trapping solution by distillation. The trapping solution was applied to IC system. Sulfites was separated on an anionic separator column, HPIC-AS4A with 0.75mM $NAHCO_3/2.25mM\;Na_2CO_3$ as the eluent and determined by the use of conductivity detector. The recoveries of sulfites added to water, carrot and apple at level of 1 ppm were 99.8%, 91.6% and 83.5%, respectively. The detection limit was 0.2 ppm in the case of a 10 g sample size. All experiment could be finished within 20 minutes

  • PDF

Facile synthesis of ZnBi2O4-graphite composites as highly active visible-light photocatalyst for the mineralization of rhodamine B

  • Nguyen, Thi Mai Tho;Bui, The Huy;Dang, Nguyen Nha Khanh;Ho, Nguyen Nhat Ha;Vu, Quang Huy;Ngo, Thi Tuong Vy;Do, Manh Huy;Duong, Phuoc Dat;Nguyen, Thi Kim Phuong
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2442-2451
    • /
    • 2018
  • Novel highly active visible-light photocatalysts in the form of zinc bismuth oxide ($ZnBi_2O_4$) and graphite hybrid composites were prepared by coupling via a co-precipitation method followed by calcination at $450^{\circ}C$. The asprepared $ZnBi_2O_4$-graphite hybrid composites were tested for the degradation of rhodamine B (RhB) solutions under visible-light irradiation. The existence of strong electronic coupling between the two components within the $ZnBi_2O_4$-graphite heterostructure suppressed the photogenerated recombination of electrons and holes to a remarkable extent. The prepared composite exhibited excellent photocatalytic activity, leading to more than 93% of RhB degradation at an initial concentration of $50mg{\cdot}L^{-1}$ with 1.0 g catalyst per liter in 150 min. The excellent visible-light photocatalytic mineralization of $ZnBi_2O_4-1.0graphite$ in comparison with pristine $ZnBi_2O_4$ could be attributed to synergetic effects, charge transfer between $ZnBi_2O_4$ and graphite, and the separation efficiency of the photogenerated electrons and holes. The photo-induced $h^+$ and the superoxide anion were the major active species responsible for the photodegradation process. The results demonstrate the feasibility of $ZnBi_2O_4-1.0graphite$ as a potential heterogeneous photocatalyst for environmental remediation.

Deficiency of Anoctamin 5/TMEM16E causes nuclear positioning defect and impairs Ca2+ signaling of differentiated C2C12 myotubes

  • Phuong, Tam Thi Thanh;An, Jieun;Park, Sun Hwa;Kim, Ami;Choi, Hyun Bin;Kang, Tong Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.539-547
    • /
    • 2019
  • Anoctamin 5 (ANO5)/TMEM16E belongs to a member of the ANO/TMEM16 family member of anion channels. However, it is a matter of debate whether ANO5 functions as a genuine plasma membrane chloride channel. It has been recognized that mutations in the ANO5 gene cause many skeletal muscle diseases such as limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi muscular dystrophy type 3 (MMD3) in human. However, the molecular mechanisms of the skeletal myopathies caused by ANO5 defects are poorly understood. To understand the role of ANO5 in skeletal muscle development and function, we silenced the ANO5 gene in C2C12 myoblasts and evaluated whether it impairs myogenesis and myotube function. ANO5 knockdown (ANO5-KD) by shRNA resulted in clustered or aggregated nuclei at the body of myotubes without affecting differentiation or myotube formation. Nuclear positioning defect of ANO5-KD myotubes was accompanied with reduced expression of Kif5b protein, a kinesin-related motor protein that controls nuclear transport during myogenesis. ANO5-KD impaired depolarization-induced $[Ca2^{+}]_i$ transient and reduced sarcoplasmic reticulum (SR) $Ca^{2+}$ storage. ANO5-KD resulted in reduced protein expression of the dihydropyridine receptor (DHPR) and SR $Ca^{2+}-ATPase$ subtype 1. In addition, ANO5-KD compromised co-localization between DHPR and ryanodine receptor subtype 1. It is concluded that ANO5-KD causes nuclear positioning defect by reduction of Kif5b expression, and compromises $Ca^{2+}$ signaling by downregulating the expression of DHPR and SERCA proteins.

Surface expression of TTYH2 is attenuated by direct interaction with β-COP

  • Ryu, Jiwon;Kim, Dong-Gyu;Lee, Young-Sun;Bae, Yeonju;Kim, Ajung;Park, Nammi;Hwang, Eun Mi;Park, Jae-Yong
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.445-450
    • /
    • 2019
  • TTYH2 is a calcium-activated, inwardly rectifying anion channel that has been shown to be related to renal cancer and colon cancer. Based on the topological prediction, TTYH2 protein has five transmembrane domains with the extracellular N-terminus and the cytoplasmic C-terminus. In the present study, we identified a vesicle transport protein, ${\beta}$-COP, as a novel specific binding partner of TTYH2 by yeast two-hybrid screening using a human brain cDNA library with the C-terminal region of TTYH2 (TTYH2-C) as a bait. Using in vitro and in vivo binding assays, we confirmed the protein-protein interactions between TTYH2 and ${\beta}$-COP. We also found that the surface expression and activity of TTYH2 were decreased by co-expression with ${\beta}$-COP in the heterologous expression system. In addition, ${\beta}$-COP associated with TTYH2 in a native condition at a human colon cancer cell line, LoVo cells. The over-expression of ${\beta}$-COP in the LoVo cells led to a dramatic decrease in the surface expression and activity of endogenous TTYH2. Collectively, these data suggested that ${\beta}$-COP plays a critical role in the trafficking of the TTYH2 channel to the plasma membrane.

Hydrogen Production from Water Electrolysis Driven by High Membrane Voltage of Reverse Electrodialysis

  • Han, Ji-Hyung;Kim, Hanki;Hwang, Kyo-Sik;Jeong, Namjo;Kim, Chan-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.302-312
    • /
    • 2019
  • The voltage produced from the salinity gradient in reverse electrodialysis (RED) increases proportionally with the number of cell pairs of alternating cation and anion exchange membranes. Large-scale RED systems consisting of hundreds of cell pairs exhibit high voltage of more than 10 V, which is sufficient to utilize water electrolysis as the electrode reaction even though there is no specific strategy for minimizing the overpotential of water electrolysis. Moreover, hydrogen gas can be simultaneously obtained as surplus energy from the electrochemical reduction of water at the cathode if the RED system is equipped with proper venting and collecting facilities. Therefore, RED-driven water electrolysis system can be a promising solution not only for sustainable electric power but also for eco-friendly hydrogen production with high purity without $CO_2$ emission. The RED system in this study includes a high membrane voltage from more than 50 cells, neutral-pH water as the electrolyte, and an artificial NaCl solution as the feed water, which are more universal, economical, and eco-friendly conditions than previous studies on RED with hydrogen production. We measure the amount of hydrogen produced at maximum power of the RED system using a batch-type electrode chamber with a gas bag and evaluate the interrelation between the electric power and hydrogen energy with varied cell pairs. A hydrogen production rate of $1.1{\times}10^{-4}mol\;cm^{-2}h^{-1}$ is obtained, which is larger than previously reported values for RED system with simultaneous hydrogen production.

Development of Zinc-Doped Titanium Dioxide Coatings with Enhanced Biocompatibility for Biomedical Application

  • Minseo Yu;Yo Han Song;Mi-Kyung Han
    • Korean Journal of Materials Research
    • /
    • v.34 no.8
    • /
    • pp.377-386
    • /
    • 2024
  • The surface of titanium (Ti) dental implants was modified by applying a zinc (Zn)-doped titanium dioxide (TiO2) coating. Initially, the Ti surfaces were etched with NaOH, followed by a hydrolysis co-condensation using tetrabutyl titanate (TBT, Ti(OC4H9)4) and zinc nitrate hexahydrate (Zn(NO3)2·6H2O), with ammonia water (NH3·H2O) acting as a hydroxide anion source. The morphology and chemical composition of the Zn-doped TiO2-coated Ti plates were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and scanning electron microscopy (SEM). Synthesis temperatures were carefully adjusted to produce anatase Zn-doped TiO2 nanoparticles with a bipyramidal structure and approximate sizes of 100 nm. Wettability tests and cell viability assays demonstrated the biomedical potential of these modified surfaces, which showed high biocompatibility with a survival rate of over 95 % (p < 0.05) and improved wettability. Corrosion resistance tests using potentiodynamic polarization reveal that Zn-TiO2-treated samples with an anatase crystal structure exhibited a lower corrosion current density and more noble corrosion potential compared to samples coated with a rutile structure. This method offers a scalable approach that could be adapted by the biomaterial industry to improve the functionality and longevity of various biomedical implants.