• Title/Summary/Keyword: cnn

Search Result 2,164, Processing Time 0.022 seconds

Speech emotion recognition using attention mechanism-based deep neural networks (주목 메커니즘 기반의 심층신경망을 이용한 음성 감정인식)

  • Ko, Sang-Sun;Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.407-412
    • /
    • 2017
  • In this paper, we propose a speech emotion recognition method using a deep neural network based on the attention mechanism. The proposed method consists of a combination of CNN (Convolution Neural Networks), GRU (Gated Recurrent Unit), DNN (Deep Neural Networks) and attention mechanism. The spectrogram of the speech signal contains characteristic patterns according to the emotion. Therefore, we modeled characteristic patterns according to the emotion by applying the tuned Gabor filters as convolutional filter of typical CNN. In addition, we applied the attention mechanism with CNN and FC (Fully-Connected) layer to obtain the attention weight by considering context information of extracted features and used it for emotion recognition. To verify the proposed method, we conducted emotion recognition experiments on six emotions. The experimental results show that the proposed method achieves higher performance in speech emotion recognition than the conventional methods.

Power Analysis Attack of Block Cipher AES Based on Convolutional Neural Network (블록 암호 AES에 대한 CNN 기반의 전력 분석 공격)

  • Kwon, Hong-Pil;Ha, Jae-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.14-21
    • /
    • 2020
  • In order to provide confidential services between two communicating parties, block data encryption using a symmetric secret key is applied. A power analysis attack on a cryptosystem is a side channel-analysis method that can extract a secret key by measuring the power consumption traces of the crypto device. In this paper, we propose an attack model that can recover the secret key using a power analysis attack based on a deep learning convolutional neural network (CNN) algorithm. Considering that the CNN algorithm is suitable for image analysis, we particularly adopt the recurrence plot (RP) signal processing method, which transforms the one-dimensional power trace into two-dimensional data. As a result of executing the proposed CNN attack model on an XMEGA128 experimental board that implemented the AES-128 encryption algorithm, we recovered the secret key with 22.23% accuracy using raw power consumption traces, and obtained 97.93% accuracy using power traces on which we applied the RP processing method.

Weather Recognition Based on 3C-CNN

  • Tan, Ling;Xuan, Dawei;Xia, Jingming;Wang, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3567-3582
    • /
    • 2020
  • Human activities are often affected by weather conditions. Automatic weather recognition is meaningful to traffic alerting, driving assistance, and intelligent traffic. With the boost of deep learning and AI, deep convolutional neural networks (CNN) are utilized to identify weather situations. In this paper, a three-channel convolutional neural network (3C-CNN) model is proposed on the basis of ResNet50.The model extracts global weather features from the whole image through the ResNet50 branch, and extracts the sky and ground features from the top and bottom regions by two CNN5 branches. Then the global features and the local features are merged by the Concat function. Finally, the weather image is classified by Softmax classifier and the identification result is output. In addition, a medium-scale dataset containing 6,185 outdoor weather images named WeatherDataset-6 is established. 3C-CNN is used to train and test both on the Two-class Weather Images and WeatherDataset-6. The experimental results show that 3C-CNN achieves best on both datasets, with the average recognition accuracy up to 94.35% and 95.81% respectively, which is superior to other classic convolutional neural networks such as AlexNet, VGG16, and ResNet50. It is prospected that our method can also work well for images taken at night with further improvement.

A Text Sentiment Classification Method Based on LSTM-CNN

  • Wang, Guangxing;Shin, Seong-Yoon;Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.1-7
    • /
    • 2019
  • With the in-depth development of machine learning, the deep learning method has made great progress, especially with the Convolution Neural Network(CNN). Compared with traditional text sentiment classification methods, deep learning based CNNs have made great progress in text classification and processing of complex multi-label and multi-classification experiments. However, there are also problems with the neural network for text sentiment classification. In this paper, we propose a fusion model based on Long-Short Term Memory networks(LSTM) and CNN deep learning methods, and applied to multi-category news datasets, and achieved good results. Experiments show that the fusion model based on deep learning has greatly improved the precision and accuracy of text sentiment classification. This method will become an important way to optimize the model and improve the performance of the model.

Classification Algorithm for Liver Lesions of Ultrasound Images using Ensemble Deep Learning (앙상블 딥러닝을 이용한 초음파 영상의 간병변증 분류 알고리즘)

  • Cho, Young-Bok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.101-106
    • /
    • 2020
  • In the current medical field, ultrasound diagnosis can be said to be the same as a stethoscope in the past. However, due to the nature of ultrasound, it has the disadvantage that the prediction of results is uncertain depending on the skill level of the examiner. Therefore, this paper aims to improve the accuracy of liver lesion detection during ultrasound examination based on deep learning technology to solve this problem. In the proposed paper, we compared the accuracy of lesion classification using a CNN model and an ensemble model. As a result of the experiment, it was confirmed that the classification accuracy in the CNN model averaged 82.33% and the ensemble model averaged 89.9%, about 7% higher. Also, it was confirmed that the ensemble model was 0.97 in the average ROC curve, which is about 0.4 higher than the CNN model.

Convolutional Neural Network and Data Mutation for Time Series Pattern Recognition (컨벌루션 신경망과 변종데이터를 이용한 시계열 패턴 인식)

  • Ahn, Myong-ho;Ryoo, Mi-hyeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.727-730
    • /
    • 2016
  • TSC means classifying time series data based on pattern. Time series data is quite common data type and it has high potential in many fields, so data mining and machine learning have paid attention for long time. In traditional approach, distance and dictionary based methods are quite popular. but due to time scale and random noise problems, it has clear limitation. In this paper, we propose a novel approach to deal with these problems with CNN and data mutation. CNN is regarded as proven neural network model in image recognition, and could be applied to time series pattern recognition by extracting pattern. Data mutation is a way to generate mutated data with different methods to make CNN more robust and solid. The proposed method shows better performance than traditional approach.

  • PDF

A Design of Du-CNN based on the Hybrid Machine Characters to Classify Target and Clutter in The IR Image (적외선 영상에서의 표적과 클러터 구분을 위한 Hybrid Machine Character 기반의 Du-CNN 설계)

  • Lee, Juyoung;Lim, Jaewan;Baek, Haeun;Kim, Chunho;Park, Jungsoo;Koh, Eunjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.758-766
    • /
    • 2017
  • In this paper, we propose a robust duality of CNN(Du-CNN) method which can classify the target and clutter in coastal environment for IR Imaging Sensor. In coastal environment, there are various clutter that have many similarities with real target due to diverse change of air temperature, water temperature, weather and season. Also, real target have various feature due to the same reason. Thus, the proposed Du-CNN method adopts human's multiple personality utilization and CNN technique to learn and classify target and clutter. This method has an advantage of the real time operation. Experimental results on sampled dataset of real infrared target and clutter demonstrate that the proposed method have better success rate to classify the target and clutter than general CNN method.

Fingerprint Liveness Detection and Visualization Using Convolutional Neural Networks Feature (Convolutional Neural Networks 특징을 이용한 지문 이미지의 위조여부 판별 및 시각화)

  • Kim, Weon-jin;Li, Qiong-xiu;Park, Eun-soo;Kim, Jung-min;Kim, Hak-il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1259-1267
    • /
    • 2016
  • With the growing use of fingerprint authentication systems in recent years, the fake fingerprint detection is becoming more and more important. This paper mainly proposes a method for fake fingerprint detection based on CNN, it will visualize the distinctive part of detected fingerprint which provides a deeper insight in CNN model. After the preprocessing part using fingerprint segmentation, the pretrained CNN model is used for detecting the liveness detection. Not only a liveness detection but also feature analysis about the live fingerprint and fake fingerprint are provided after classifying which materials are used for making the fake fingerprint. Our system is evaluated on three databases in LivDet2013, which compromise almost 6500 live fingerprint images and 6000 fake fingerprint images in total. The proposed method achieves 3.1% ACE value about the liveness detection and achieves 79.58% accuracy on LiveDet2013.

Constructing for Korean Traditional culture Corpus and Development of Named Entity Recognition Model using Bi-LSTM-CNN-CRFs (한국 전통문화 말뭉치구축 및 Bi-LSTM-CNN-CRF를 활용한 전통문화 개체명 인식 모델 개발)

  • Kim, GyeongMin;Kim, Kuekyeng;Jo, Jaechoon;Lim, HeuiSeok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.47-52
    • /
    • 2018
  • Named Entity Recognition is a system that extracts entity names such as Persons(PS), Locations(LC), and Organizations(OG) that can have a unique meaning from a document and determines the categories of extracted entity names. Recently, Bi-LSTM-CRF, which is a combination of CRF using the transition probability between output data from LSTM-based Bi-LSTM model considering forward and backward directions of input data, showed excellent performance in the study of object name recognition using deep-learning, and it has a good performance on the efficient embedding vector creation by character and word unit and the model using CNN and LSTM. In this research, we describe the Bi-LSTM-CNN-CRF model that enhances the features of the Korean named entity recognition system and propose a method for constructing the traditional culture corpus. We also present the results of learning the constructed corpus with the feature augmentation model for the recognition of Korean object names.

A Study on H-CNN Based Pedestrian Detection Using LGP-FL and Hippocampal Structure (LGP-FL과 해마 구조를 이용한 H-CNN 기반 보행자 검출에 대한 연구)

  • Park, Su-Bin;Kang, Dae-Seong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.75-83
    • /
    • 2018
  • Recently, autonomous vehicles have been actively studied. Pedestrian detection and recognition technology is important in autonomous vehicles. Pedestrian detection using CNN(Convolutional Neural Netwrok), which is mainly used recently, generally shows good performance, but there is a performance degradation depending on the environment of the image. In this paper, we propose a pedestrian detection system applying long-term memory structure of hippocampal neural network based on CNN network with LGP-FL (Local Gradient Pattern-Feature Layer) added. First, change the input image to a size of $227{\times}227$. Then, the feature is extracted through a total of 5 layers of convolution layer. In the process, LGP-FL adds the LGP feature pattern and stores the high-frequency pattern in the long-term memory. In the detection process, it is possible to detect the pedestrian more accurately by detecting using the LGP feature pattern information robust to brightness and color change. A comparison of the existing methods and the proposed method confirmed the increase of detection rate of about 1~4%.