• Title/Summary/Keyword: cnn

Search Result 2,088, Processing Time 0.03 seconds

Correlation Extraction from KOSHA to enable the Development of Computer Vision based Risks Recognition System

  • Khan, Numan;Kim, Youjin;Lee, Doyeop;Tran, Si Van-Tien;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.87-95
    • /
    • 2020
  • Generally, occupational safety and particularly construction safety is an intricate phenomenon. Industry professionals have devoted vital attention to enforcing Occupational Safety and Health (OHS) from the last three decades to enhance safety management in construction. Despite the efforts of the safety professionals and government agencies, current safety management still relies on manual inspections which are infrequent, time-consuming and prone to error. Extensive research has been carried out to deal with high fatality rates confronting by the construction industry. Sensor systems, visualization-based technologies, and tracking techniques have been deployed by researchers in the last decade. Recently in the construction industry, computer vision has attracted significant attention worldwide. However, the literature revealed the narrow scope of the computer vision technology for safety management, hence, broad scope research for safety monitoring is desired to attain a complete automatic job site monitoring. With this regard, the development of a broader scope computer vision-based risk recognition system for correlation detection between the construction entities is inevitable. For this purpose, a detailed analysis has been conducted and related rules which depict the correlations (positive and negative) between the construction entities were extracted. Deep learning supported Mask R-CNN algorithm is applied to train the model. As proof of concept, a prototype is developed based on real scenarios. The proposed approach is expected to enhance the effectiveness of safety inspection and reduce the encountered burden on safety managers. It is anticipated that this approach may enable a reduction in injuries and fatalities by implementing the exact relevant safety rules and will contribute to enhance the overall safety management and monitoring performance.

  • PDF

Prediction of Ship Travel Time in Harbour using 1D-Convolutional Neural Network (1D-CNN을 이용한 항만내 선박 이동시간 예측)

  • Sang-Lok Yoo;Kwang-Il Ki;Cho-Young Jung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.275-276
    • /
    • 2022
  • VTS operators instruct ships to wait for entry and departure to sail in one-way to prevent ship collision accidents in ports with narrow routes. Currently, the instructions are not based on scientific and statistical data. As a result, there is a significant deviation depending on the individual capability of the VTS operators. Accordingly, this study built a 1d-convolutional neural network model by collecting ship and weather data to predict the exact travel time for ship entry/departure waiting for instructions in the port. It was confirmed that the proposed model was improved by more than 4.5% compared to other ensemble machine learning models. Through this study, it is possible to predict the time required to enter and depart a vessel in various situations, so it is expected that the VTS operators will help provide accurate information to the vessel and determine the waiting order.

  • PDF

Research on Pothole Detection using Feature-Level Ensemble of Pretrained Deep Learning Models (사전 학습된 딥러닝 모델들의 피처 레벨 앙상블을 이용한 포트홀 검출 기법 연구)

  • Ye-Eun Shin;Inki Kim;Beomjun Kim;Younghoon Jeon;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.35-38
    • /
    • 2023
  • 포트홀은 주행하는 자동차와 접촉이 이뤄지면 차체나 운전자에게 충격을 주고 제어를 잃게 하여 도로 위 안전을 위협할 수 있다. 포트홀의 검출을 위한 국내 동향으로는 진동을 이용한 방식과 신고시스템 이용한 방식과 영상 인식을 기반한 방식이 있다. 이 중 영상 인식 기반 방식은 보급이 쉽고 비용이 저렴하나, 컴퓨터 비전 알고리즘은 영상의 품질에 따라 정확도가 달라지는 문제가 있었다. 이를 보완하기 위해 영상 인식 기반의 딥러닝 모델을 사용한다. 따라서, 본 논문에서는 사전 학습된 딥러닝 모델의 정확도 향상을 위한 Feature Level Ensemble 기법을 제안한다. 제안된 기법은 사전 학습된 CNN 모델 중 Test 데이터의 정확도 기준 Top-3 모델을 선정하여 각 딥러닝 모델의 Feature Map을 Concatenate하고 이를 Fully-Connected(FC) Layer로 입력하여 구현한다. Feature Level Ensemble 기법이 적용된 딥러닝 모델은 평균 대비 3.76%의 정확도 향상을 보였으며, Top-1 모델인 ShuffleNet보다 0.94%의 정확도 향상을 보였다. 결론적으로 본 논문에서 제안된 기법은 사전 학습된 모델들을 이용하여 각 모델의 다양한 특징을 통해 기존 모델 대비 정확도의 향상을 이룰 수 있었다.

  • PDF

Research on APC Verification for Disaster Victims and Vulnerable Facilities (재난약자 및 취약시설에 대한 APC실증에 관한 연구)

  • Kim, Seung-Yong;Hwang, In-Cheol ;Kim, Dong-Sik
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.278-281
    • /
    • 2023
  • 연구목적: 본 연구는 요양병원 등 재난취약시설에 재난이 발생할 경우 잔류한 요구조자를 정확하게 파악하여 소방 등 대응기관에 제공하는 APC(Auto People Counting)의 인식률 개선에 목적이 있다. 현재 재난 발생 시 건물 내 요구조자의 현황 파악을 위해 대응기관이 재난 현장에 도착하여 건물관계자에게 직접 물어보고 있다. 이는 요구조자에 대한 부정확한 정보일 가능성이 있어 대응기관의 업무범위가 확대되고 이로인해 구조자의 안전에도 위험이 될 수 있다. APC는 건물내 출입하는 인원을 자동으로 집계하여 실시간 잔류인원 정보를 제공함으로써 재난 시 요구조자 현황을 정확히 파악할 수 있다. 본 연구에서는 APC가 보다 정확하게 출입 인원을 집계할 수 있도록 최적의 인공지능 알고리즘을 선정하는데 목적이 있다. 연구방법: 본 연구에서는 실제 재난취약시설에 설치되어 운영 중인 APC를 대상으로 카메라를 통해 출입 인원의 이미지를 인식하는 알고리즘을 개선하기 위해 CNN모델을 활용하여 베이스라인 모델링을 하였다. 다양한 알고리즘의 성능을 분석하여 상위 7개의 후보군을 선정하고 전이학습 모델을 활용하여 성능이 가장 우수한 최적의 알고리즘을 선정하는 방법으로 연구를 수행하였다. 연구결과: 실험결과 시간과 성능이 가장 좋은 Densenet201, Resnet152v2 모델의 정밀도와 재현율을 확인한 결과 모든 라벨에 대해서 정확도 100%를 나타내는 것을 확인할 수 있었다. 이 중 Densenet201 모델이 더 높은 성능을 보여주었다. 결론: 다양한 인공지능 알고리즘 중 APC에 적용할 수 있는 최적의 알고리즘을 선정하였고 이는 APC의 인식률을 개선하여 재난시 요구조자의 정보를 정확하게 파악하여 신속하고 안전한 구조작업이 가능할 것이다. 이는 요구조자의 안전한 구조뿐만 아니라 구조작업을 수행하는 구조자의 안전을 확보하는 데 기여할 것으로 기대된다. 향후 연무 등 다양한 재난상황에서 재난취약시설 내 출입인원을 정확하게 파악할 수 있도록 알고리즘 분석 및 학습에 대한 추가 연구가 요구된다.

  • PDF

Classification of Tabular Data using High-Dimensional Mapping and Deep Learning Network (고차원 매핑기법과 딥러닝 네트워크를 통한 정형데이터의 분류)

  • Kyeong-Taek Kim;Won-Du Chang
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.119-124
    • /
    • 2023
  • Deep learning has recently demonstrated conspicuous efficacy across diverse domains than traditional machine learning techniques, as the most popular approach for pattern recognition. The classification problems for tabular data, however, are remain for the area of traditional machine learning. This paper introduces a novel network module designed to tabular data into high-dimensional tensors. The module is integrated into conventional deep learning networks and subsequently applied to the classification of structured data. The proposed method undergoes training and validation on four datasets, culminating in an average accuracy of 90.22%. Notably, this performance surpasses that of the contemporary deep learning model, TabNet, by 2.55%p. The proposed approach acquires significance by virtue of its capacity to harness diverse network architectures, renowned for their superior performance in the domain of computer vision, for the analysis of tabular data.

Radiation Prediction Based on Multi Deep Learning Model Using Weather Data and Weather Satellites Image (기상 데이터와 기상 위성 영상을 이용한 다중 딥러닝 모델 기반 일사량 예측)

  • Jae-Jung Kim;Yong-Hun You;Chang-Bok Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.569-575
    • /
    • 2021
  • Deep learning shows differences in prediction performance depending on data quality and model. This study uses various input data and multiple deep learning models to build an optimal deep learning model for predicting solar radiation, which has the most influence on power generation prediction. did. As the input data, the weather data of the Korea Meteorological Administration and the clairvoyant meteorological image were used by segmenting the image of the Korea Meteorological Agency. , comparative evaluation, and predicting solar radiation by constructing multiple deep learning models connecting the models with the best error rate in each model. As an experimental result, the RMSE of model A, which is a multiple deep learning model, was 0.0637, the RMSE of model B was 0.07062, and the RMSE of model C was 0.06052, so the error rate of model A and model C was better than that of a single model. In this study, the model that connected two or more models through experiments showed improved prediction rates and stable learning results.

Artificial Neural Network-based Thermal Environment Prediction Model for Energy Saving of Data Center Cooling Systems (데이터센터 냉각 시스템의 에너지 절약을 위한 인공신경망 기반 열환경 예측 모델)

  • Chae-Young Lim;Chae-Eun Yeo;Seong-Yool Ahn;Sang-Hyun Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.883-888
    • /
    • 2023
  • Since data centers are places that provide IT services 24 hours a day, 365 days a year, data center power consumption is expected to increase to approximately 10% by 2030, and the introduction of high-density IT equipment will gradually increase. In order to ensure the stable operation of IT equipment, various types of research are required to conserve energy in cooling and improve energy management. This study proposes the following process for energy saving in data centers. We conducted CFD modeling of the data center, proposed an artificial intelligence-based thermal environment prediction model, compared actual measured data, the predicted model, and the CFD results, and finally evaluated the data center's thermal management performance. It can be seen that the predicted values of RCI, RTI, and PUE are also similar according to the normalization used in the normalization method. Therefore, it is judged that the algorithm proposed in this study can be applied and provided as a thermal environment prediction model applied to data centers.

Resource-Efficient Object Detector for Low-Power Devices (저전력 장치를 위한 자원 효율적 객체 검출기)

  • Akshay Kumar Sharma;Kyung Ki Kim
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.17-20
    • /
    • 2024
  • This paper presents a novel lightweight object detection model tailored for low-powered edge devices, addressing the limitations of traditional resource-intensive computer vision models. Our proposed detector, inspired by the Single Shot Detector (SSD), employs a compact yet robust network design. Crucially, it integrates an 'enhancer block' that significantly boosts its efficiency in detecting smaller objects. The model comprises two primary components: the Light_Block for efficient feature extraction using Depth-wise and Pointwise Convolution layers, and the Enhancer_Block for enhanced detection of tiny objects. Trained from scratch on the Udacity Annotated Dataset with image dimensions of 300x480, our model eschews the need for pre-trained classification weights. Weighing only 5.5MB with approximately 0.43M parameters, our detector achieved a mean average precision (mAP) of 27.7% and processed at 140 FPS, outperforming conventional models in both precision and efficiency. This research underscores the potential of lightweight designs in advancing object detection for edge devices without compromising accuracy.

Enhancing Acute Kidney Injury Prediction through Integration of Drug Features in Intensive Care Units

  • Gabriel D. M. Manalu;Mulomba Mukendi Christian;Songhee You;Hyebong Choi
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.434-442
    • /
    • 2023
  • The relationship between acute kidney injury (AKI) prediction and nephrotoxic drugs, or drugs that adversely affect kidney function, is one that has yet to be explored in the critical care setting. One contributing factor to this gap in research is the limited investigation of drug modalities in the intensive care unit (ICU) context, due to the challenges of processing prescription data into the corresponding drug representations and a lack in the comprehensive understanding of these drug representations. This study addresses this gap by proposing a novel approach that leverages patient prescription data as a modality to improve existing models for AKI prediction. We base our research on Electronic Health Record (EHR) data, extracting the relevant patient prescription information and converting it into the selected drug representation for our research, the extended-connectivity fingerprint (ECFP). Furthermore, we adopt a unique multimodal approach, developing machine learning models and 1D Convolutional Neural Networks (CNN) applied to clinical drug representations, establishing a procedure which has not been used by any previous studies predicting AKI. The findings showcase a notable improvement in AKI prediction through the integration of drug embeddings and other patient cohort features. By using drug features represented as ECFP molecular fingerprints along with common cohort features such as demographics and lab test values, we achieved a considerable improvement in model performance for the AKI prediction task over the baseline model which does not include the drug representations as features, indicating that our distinct approach enhances existing baseline techniques and highlights the relevance of drug data in predicting AKI in the ICU setting.

Stress Level Based Emotion Classification Using Hybrid Deep Learning Algorithm

  • Sivasankaran Pichandi;Gomathy Balasubramanian;Venkatesh Chakrapani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3099-3120
    • /
    • 2023
  • The present fast-moving era brings a serious stress issue that affects elders and youngsters. Everyone has undergone stress factors at least once in their lifetime. Stress is more among youngsters as they are new to the working environment. whereas the stress factors for elders affect the individual and overall performance in an organization. Electroencephalogram (EEG) based stress level classification is one of the widely used methodologies for stress detection. However, the signal processing methods evolved so far have limitations as most of the stress classification models compute the stress level in a predefined environment to detect individual stress factors. Specifically, machine learning based stress classification models requires additional algorithm for feature extraction which increases the computation cost. Also due to the limited feature learning characteristics of machine learning algorithms, the classification performance reduces and inaccurate sometimes. It is evident from numerous research works that deep learning models outperforms machine learning techniques. Thus, to classify all the emotions based on stress level in this research work a hybrid deep learning algorithm is presented. Compared to conventional deep learning models, hybrid models outperforms in feature handing. Better feature extraction and selection can be made through deep learning models. Adding machine learning classifiers in deep learning architecture will enhance the classification performances. Thus, a hybrid convolutional neural network model was presented which extracts the features using CNN and classifies them through machine learning support vector machine. Simulation analysis of benchmark datasets demonstrates the proposed model performances. Finally, existing methods are comparatively analyzed to demonstrate the better performance of the proposed model as a result of the proposed hybrid combination.