• 제목/요약/키워드: clutch friction pad

검색결과 8건 처리시간 0.018초

습식클러치 마찰재의 체결 거동에 의한 마찰열 해석 (Frictional Heat Generation in Wet Clutch Engagement according to Groove Pattern on Clutch Pad)

  • 김해용;장시열;김우정
    • Tribology and Lubricants
    • /
    • 제30권5호
    • /
    • pp.265-270
    • /
    • 2014
  • Frictional heat greatly influences the friction behaviors during clutch engagement. Therefore, the engagement of a wet or dry clutch is frequently not under control by the frictional heat. In a wet clutch, the frictional temperature also specially needs to be controlled, and in many cases, the clutch material is selected to prevent a temperature rise from the friction between friction pad and separator. However, only the selection of the clutch material cannot ensure sufficient control of the temperature rise by the friction. The groove pattern on a friction pad is designed for more flow rates of transmission fluid between the contact gap of clutch pad and separator for the cooling effect. In this work, grove patterns are designed for more flow rates out of the contact gap between friction pad and separator plate. Selected groove design shows the improvement flow rates of transmission fluid through both inner and outer radius, where most of the transmission fluid flows through the outer radius when the clutch is engaged due to the centrifugal force in conventional wet clutch groove. Several comparisons of the amounts of frictional heat generated on clutch pads are made in order to verify the decrease of the temperature rise according to the flow rates along the groove patterns.

습식 DCT(Dual Clutch Transmission) 클러치 팩 내부에서의 체결 동작에 따른 변속기유 거동 연구 (Study on the Lubricant Flow Behaviors in the Wet Clutch Pack System of Dual Clutch Transmission)

  • 김우정;이상호;장시열
    • Tribology and Lubricants
    • /
    • 제33권3호
    • /
    • pp.85-91
    • /
    • 2017
  • This work studies the flow behaviors in the gap between the friction pad and separator in wet-clutch systems. The fluid volume of the lubricant is modeled using the entire system of wet-clutch pack of a dual clutch transmission that has larger outer radius of odd gear shifts and smaller inner radius of even gear shifts. Flow behaviors in the gap of the clutch pad are computed using the gear shift modes that consider the real relative velocities between the friction pad and separator. Flow behaviors in the gap of the disengaged clutch pad are mainly investigated for the wet-clutch system, whereas the engaged clutch pad is modeled with no fluid rate through the contacting surfaces. The developed hydrodynamic fluid pressures and velocity fields in the clutch pad gap are computed to obtain the relevant information for managing flow rates in wet-clutch packs under dual operating conditions during gear shifts. These hydrodynamic pressures and velocity fields are compared on the basis of each gear level and gap location, which is necessary to determine the effects of groove patterns on the friction pad. Shear stresses in the gap locations are also computed on the basis of the gear level for the inner and outer clutch pads. The computed results are compared and used for the design of cooling capacity against frictional heat generation in wet-clutch pack systems.

파형 습식클러치의 드래그 토크 저감을 위한 파형내 유로 위치 설정 설계 연구 (A Study on the Flow Path Position Design of Waviness Friction Pad for Drag Torque Reduction in Wet Type DCT)

  • 조정희;한준열;김우정;장시열
    • Tribology and Lubricants
    • /
    • 제33권1호
    • /
    • pp.1-8
    • /
    • 2017
  • Drag torque reduction in a wet clutch pack is a key aspect of the design process of the dual clutch transmission (DCT) system. In order to reduce the drag torque caused by lubricant shear resistance, recently developed wet clutch pack systems of DCT, as well as automatic transmission and other four-wheel drive (4WD) couplings, frequently utilize wavy wet clutch pads. Therefore, wavy shape of friction pad are made on the groove patterns like waffle pattern for the reduction of drag torque. Additionally, the groove patterns are designed with larger channels at several locations on the friction pad to facilitate faster outflow of lubricant. However, channel performance is a function of the waviness of the friction pad at the location of the particular channel. This is because the discharge sectional area varies according to the waviness amplitude at the location of the particular channel. The higher location of the additional channel on the friction pad results in a larger cross-sectional area, which allows for a larger flow discharge rate. This results in reduction of the drag torque caused by the shear resistance of DCTF, because of marginal volume fraction of fluid (VOF) in the space between the friction pad and separator. This study computes the VOF in the space between the friction pad and separator, the hydrodynamic pressure developed, and the shear resistance of friction torque, by using CFD software (FLUENT). In addition, the study investigates the dependence of these parameters on the location and waviness amplitude of the channel pattern on the friction pad. The paper presents design guidelines on the proper location of high waviness amplitude on wavy friction pads.

습식 DCT의 드래그 토크 저감을 위한 클러치 패드 유로 설계 (A Study on the Wet Clutch Pattern Design for the Drag Torque Reduction in Wet DCT System)

  • 조정희;한준열;김우정;장시열
    • Tribology and Lubricants
    • /
    • 제33권2호
    • /
    • pp.71-78
    • /
    • 2017
  • The drag torque in the wet clutch system of a dual clutch transmission system is investigated because it is relatively high, up to 10 of the total output torque of the engine, even when the clutch is in the disengagement state with zero torque transfer. Drag torque results from the shear resistance of the DCTF between the friction pad and separator plate. To reduce the drag torque for ensuring fuel economy, the groove pattern of the wet clutch friction pad is designed to have a high flow rate through the pattern groove. In this study, four types of groove patterns on the friction pad are designed. The volume fraction of the DCTF (VOF) and hydrodynamic pressure developments in the gap between the friction pad and separator plate are computed to correlate with the computation of the drag torque. From the computational results, it is found that a high VOF and hydrodynamics increase the drag torque resulting from the shear resistance of the DCTF. Therefore, a patterned groove design should be used for increasing the flow rate to have more air parts in the gap to reduce the drag torque. In this study, ANSYS FLUENT is used to solve the flow analysis.

자기 체결 마찰 클러치의 전달 토크에 관한 연구 (A Study on the Transmitted Torque of Self Clamping Friction Clutch)

  • 왕지석;김종도;윤희종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1149-1156
    • /
    • 2008
  • The principle of self clamping friction clutch is presented in this paper and the transmitted torque capacity is also calculated. In order to enlarge the friction force, a part of rotating force of driving side is converted to normal force of friction materials by clamping arm. The increased normal force of friction materials assures the large friction force and the transmitted torque capacity of clutch becomes large. The self clamping friction clutch is adopted in the tube type air pressure clutch and the condition of stability is investigated. It is proven that the inclined angle of clamping arm and the friction factor of friction materials are the essential elements in stability and torque capacity of self clamping friction clutch. The transmitted torque capacity of self clamping friction clutch is compared with air pressure clutch. The normal force of friction lining is magnified by 1/(1-k) and the transmitted torque capacity is also magnified with same proportion comparing with air pressure clutch. The larger the friction factor of friction lining, the larger the magnification factor. The longer the clamping arm, the smaller the magnification factor. It must be also noted that the value of k=${\mu}Y/X$ is the criterion of stability. If the value of k=${\mu}Y/X$ is greater than or equal to 1, the self clamping friction clutch is unstable and it can not be used as clutch.

습식클러치 패드의 Groove 패턴에 의한 변속기유의 동적 거동 (Analysis of Dynamic Behaviors of Transmission Fluid Film in Wet Clutch Pad according to Patterned Grooves)

  • 김해용;장시열;김우정;신순철
    • Tribology and Lubricants
    • /
    • 제30권2호
    • /
    • pp.92-98
    • /
    • 2014
  • Transmission fluid film behaviors in the gap between the wet clutch pad and separator plate are analyzed using the CFD software ADINA. Three pattern groove designs are selected and are used to validate the fluid film behaviors based on the outlet flow in the gap when the wet clutch pad and separator plate are engaged. The main design goal for pattern grooves is faster engagement. In most cases, much of the outlet flow of transmission fluid in the gap occurs on the outer radius boundary due to the centrifugal force generated by the clutch pad circular motion. Groove patterns are created to ensure faster transmission fluid outlet flow in the direction of the inner radius boundary. Computational results of the selected groove patterns are compared.

마찰패드의 마모를 고려한 건식 클러치의 접촉점 추종 알고리즘 개발 (Development of Contact Point Estimation Algorithm of Dry type Clutch with Considering the friction pad wear)

  • 김성모;김모성;신창우;임원식;차석원
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.692-696
    • /
    • 2011
  • A clutch is a very important component when engine starts and gear shifting is needed. The clutch the most commonly used is the dry clutch. This type of clutch has pads, and they are worn after disengagement of clutch little by little. The characteristics of the clutch changes as these pads wear, so wear needs to be measured, and the clutch should be controlled for proper operation. In this study, the clutch contact point estimation algorithm has been developed. From this algorithm, clutch force map changes depending on wear, and the clutch operates properly. We also see the shifting transient of a vehicle for drivability with throttle valve position control and synchronizer movement.

Controlling the Hardness and Tribological Behaviour of Non-asbestos Brake Lining Materials for Automobiles

  • Mathur, R.B.;Thiyagarajan, P.;Dhami, T.L.
    • Carbon letters
    • /
    • 제5권1호
    • /
    • pp.6-11
    • /
    • 2004
  • In spite of unparalleled combination of essential material properties for brake linings and clutch facings, replacement for asbestos is seriously called for since it is a health hazard. Once asbestos is replaced with other material then composition and properties of brake pad changes. In certain cases hardness of the material may be high enough to affect the rotor material. In this study, hardness of the brake pad has been controlled using suitable reinforcement materials like glass, carbon and Kevlar pulp. Brake pad formulations were made using CNSL (cashew net shell liquid) modified phenolic resin as a binder, graphite or cashew dust as a friction modifier and barium sulphate, talc and wollastonite as fillers. Influence of each component on the hardness value has been studied and a proper formulation has been arrived at to obtain hardness values around 35 on Scleroscopic scale. Friction and wear properties of the respective brake pad materials have been measured on a dynamometer and their performance was evaluated.

  • PDF