• Title/Summary/Keyword: clustering-based pattern recognition

Search Result 68, Processing Time 0.029 seconds

Real-world multimodal lifelog dataset for human behavior study

  • Chung, Seungeun;Jeong, Chi Yoon;Lim, Jeong Mook;Lim, Jiyoun;Noh, Kyoung Ju;Kim, Gague;Jeong, Hyuntae
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.426-437
    • /
    • 2022
  • To understand the multilateral characteristics of human behavior and physiological markers related to physical, emotional, and environmental states, extensive lifelog data collection in a real-world environment is essential. Here, we propose a data collection method using multimodal mobile sensing and present a long-term dataset from 22 subjects and 616 days of experimental sessions. The dataset contains over 10 000 hours of data, including physiological, data such as photoplethysmography, electrodermal activity, and skin temperature in addition to the multivariate behavioral data. Furthermore, it consists of 10 372 user labels with emotional states and 590 days of sleep quality data. To demonstrate feasibility, human activity recognition was applied on the sensor data using a convolutional neural network-based deep learning model with 92.78% recognition accuracy. From the activity recognition result, we extracted the daily behavior pattern and discovered five representative models by applying spectral clustering. This demonstrates that the dataset contributed toward understanding human behavior using multimodal data accumulated throughout daily lives under natural conditions.

A Pattern Recognition Method of Fatigue Crack Growth on Metal using Acoustic Emission (음향방출을 이용한 금속의 피로 균열성장 패턴인식 기법)

  • Lee, Soo-Ill;Lee, Jong-Seok;Min, Hwang-Ki;Park, Cheol-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.125-137
    • /
    • 2009
  • Acoustic emission-based techniques are being used for the nondestructive inspection of mechanical systems used in service. For reliable fault monitoring related to the crack growth, it is important to identify the dynamical characteristics as well as transient crack-related signals. Widely used methods which are based on physical phenomena of the three damage stages for detecting the crack growth have a problem that crack-related acoustic emission activities overlap in time, therefore it is insufficient to estimate the exact crack growth time. The proposed pattern recognition method uses the dynamical characteristics of acoustic emission as inputs for minimizing false alarms and miss alarms and performs the temporal clustering to estimate the crack growth time accurately. Experimental results show that the proposed method is effective for practical use because of its robustness to changes of acoustic emission caused by changes of pressure levels.

Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks (PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계)

  • Oh, Sung-Kwun;Yoo, Sung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.

Management System of On-line Mode Client-cluster (온라인 모드 클라이언트-클러스터 운영 시스템)

  • 박제호;박용범
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.2
    • /
    • pp.108-113
    • /
    • 2003
  • Research results have demonstrated that conventional client-server databases have scalability problem in the presence of many concurrent clients. The multi-tier architecture that exploits similarities in clients' object access behavior partitions clients into logical clusters according to their object request pattern. As a result, object requests that are served inside the clusters, server load and request response time can be optimized. Management of clustering by utilizing clients' access pattern-based is an important component for the system's goal. Off-line methods optimizes the quality of the global clustering, the necessary cost and clustering schedule needs to be considered and planned carefully in respect of stable system's performance. In this paper, we propose methods that detect changes in access behavior and optimize system configuration in real time. Finally this paper demonstrates the effectiveness of on-line change detection and results of experimental investigation concerning reconfiguration.

  • PDF

A New Supervised Competitive Learning Algorithm and Its Application to Power System Transient Stability Analysis (새로운 지도 경쟁 학습 알고리즘의 개발과 전력계통 과도안정도 해석에의 적용)

  • Park, Young-Moon;Cho, Hong-Shik;Kim, Gwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.591-593
    • /
    • 1995
  • Artificial neural network based pattern recognition method is one of the most probable candidate for on-line power system transient stability analysis. Especially, Kohonen layer is an adequate neural network for the purpose. Each node of Kehonen layer competes on the basis of which of them has its clustering center closest to an input vector. This paper discusses Kohonen's LVQ(Learning Victor Quantization) and points out a defection of the algorithm when applied to the transient stability analysis. Only the clustering centers located near the decision boundary of the stability region is needed for the stability criterion and the centers far from the decision boundary are redundant. This paper presents a new algorithm ratted boundary searching algorithm II which assigns only the points that are near the boundary in an input space to nodes or Kohonen layer as their clustering centers. This algorithm is demonstrated with satisfaction using 4-generator 6-bus sample power system.

  • PDF

Design of Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation (얼굴의 대칭성을 이용하여 조명 변화에 강인한 2차원 얼굴 인식 시스템 설계)

  • Kim, Jong-Bum;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1104-1113
    • /
    • 2015
  • In this paper, we propose Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation. Preprocessing process is carried out to obtain mirror image which means new image rearranged by using difference between light and shade of right and left face based on a vertical axis of original face image. After image preprocessing, high dimensional image data is transformed to low-dimensional feature data through 2-directional and 2-dimensional Principal Component Analysis (2D)2PCA, which is one of dimensional reduction techniques. Polynomial-based Radial Basis Function Neural Network pattern classifier is used for face recognition. While FCM clustering is applied in the hidden layer, connection weights are defined as a linear polynomial function. In addition, the coefficients of linear function are learned through Weighted Least Square Estimation(WLSE). The Structural as well as parametric factors of the proposed classifier are optimized by using Particle Swarm Optimization(PSO). In the experiment, Yale B data is employed in order to confirm the advantage of the proposed methodology designed in the diverse illumination variation

A Study on Pattern Recognition Using Polynomial-based Radial Basis Function Neural Networks (다항식기반 RBF 신경회로망을 이용한 패턴인식에 대한 연구)

  • Ji, Kwang-Hee;Kim, Woong-Ki;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.387-389
    • /
    • 2009
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경 회로망을 설계하고 이를 패턴분류 문제에 적용하여 그 성능을 분석한다. 제안된 RBF 신경회로망은 입력층, 은닉층, 출력층으로 이루어진다. 입력층의 연결가중치는 1로서 입력층의 입력벡터는 그대로 은닉층으로 전달되고 은닉층은 FCM(Fuzzy C-means Clustering)방법을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습되어진다. 네트워크의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의한 퍼지추론의 결과로 얻어진다. 제안된 RBF 신경회로망은 여러 종류의 machine learning 데이터에 적용하여 패턴분류기로서의 성능을 평가받는다.

  • PDF

Design of PCA-based pRBFNNs Pattern Classifier for Digit Recognition (숫자 인식을 위한 PCA 기반 pRBFNNs 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.355-360
    • /
    • 2015
  • In this paper, we propose the design of Radial Basis Function Neural Network based on PCA in order to recognize handwritten digits. The proposed pattern classifier consists of the preprocessing step of PCA and the pattern classification step of pRBFNNs. In the preprocessing step, Feature data is obtained through preprocessing step of PCA for minimizing the information loss of given data and then this data is used as input data to pRBFNNs. The hidden layer of the proposed classifier is built up by Fuzzy C-Means(FCM) clustering algorithm and the connection weights are defined as linear polynomial function. In the output layer, polynomial parameters are obtained by using Least Square Estimation (LSE). MNIST database known as one of the benchmark handwritten dataset is applied for the performance evaluation of the proposed classifier. The experimental results of the proposed system are compared with other existing classifiers.

An Effective Algorithm for Subdimensional Clustering of High Dimensional Data (고차원 데이터를 부분차원 클러스터링하는 효과적인 알고리즘)

  • Park, Jong-Soo;Kim, Do-Hyung
    • The KIPS Transactions:PartD
    • /
    • v.10D no.3
    • /
    • pp.417-426
    • /
    • 2003
  • The problem of finding clusters in high dimensional data is well known in the field of data mining for its importance, because cluster analysis has been widely used in numerous applications, including pattern recognition, data analysis, and market analysis. Recently, a new framework, projected clustering, to solve the problem was suggested, which first select subdimensions of each candidate cluster and then each input point is assigned to the nearest cluster according to a distance function based on the chosen subdimensions of the clusters. We propose a new algorithm for subdimensional clustering of high dimensional data, each of the three major steps of which partitions the input points into several candidate clutters with proper numbers of points, filters the clusters that can not be useful in the next steps, and then merges the remaining clusters into the predefined number of clusters using a closeness function, respectively. The result of extensive experiments shows that the proposed algorithm exhibits better performance than the other existent clustering algorithms.

Human Action Recognition in Still Image Using Weighted Bag-of-Features and Ensemble Decision Trees (가중치 기반 Bag-of-Feature와 앙상블 결정 트리를 이용한 정지 영상에서의 인간 행동 인식)

  • Hong, June-Hyeok;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper propose a human action recognition method that uses bag-of-features (BoF) based on CS-LBP (center-symmetric local binary pattern) and a spatial pyramid in addition to the random forest classifier. To construct the BoF, an image divided into dense regular grids and extract from each patch. A code word which is a visual vocabulary, is formed by k-means clustering of a random subset of patches. For enhanced action discrimination, local BoF histogram from three subdivided levels of a spatial pyramid is estimated, and a weighted BoF histogram is generated by concatenating the local histograms. For action classification, a random forest, which is an ensemble of decision trees, is built to model the distribution of each action class. The random forest combined with the weighted BoF histogram is successfully applied to Standford Action 40 including various human action images, and its classification performance is better than that of other methods. Furthermore, the proposed method allows action recognition to be performed in near real-time.