• Title/Summary/Keyword: clustering patterns

검색결과 444건 처리시간 0.026초

자동검침 고객의 부하패턴을 이용한 일일 대표 부하패턴 생성 (Typical Daily Load Profile Generation using Load Profile of Automatic Meter Reading Customer)

  • 김영일;신진호;이봉재;양일권
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1516-1521
    • /
    • 2008
  • Recently, distribution load analysis using AMR (Automatic Meter Reading) data is researched in electric utilities. Load analysis method based on AMR system generates the typical load profile using load data of AMR customers, estimates the load profile of non-AMR customers, and analyzes the peak load and load profile of the distribution circuits and sectors per every 15 minutes/hour/day/week/month. Typical load profile is generated by the algorithm calculating the average amount of power consumption of each groups having similar load patterns. Traditional customer clustering mechanism uses only contract type code as a key. This mechanism has low accuracy because many customers having same contract code have different load patterns. In this research, We propose a customer clustring mechanism using k-means algorithm with contract type code and AMR data.

데이터 클러스터링을 위한 혼합 시뮬레이티드 어닐링 (Hybrid Simulated Annealing for Data Clustering)

  • 김성수;백준영;강범수
    • 산업경영시스템학회지
    • /
    • 제40권2호
    • /
    • pp.92-98
    • /
    • 2017
  • Data clustering determines a group of patterns using similarity measure in a dataset and is one of the most important and difficult technique in data mining. Clustering can be formally considered as a particular kind of NP-hard grouping problem. K-means algorithm which is popular and efficient, is sensitive for initialization and has the possibility to be stuck in local optimum because of hill climbing clustering method. This method is also not computationally feasible in practice, especially for large datasets and large number of clusters. Therefore, we need a robust and efficient clustering algorithm to find the global optimum (not local optimum) especially when much data is collected from many IoT (Internet of Things) devices in these days. The objective of this paper is to propose new Hybrid Simulated Annealing (HSA) which is combined simulated annealing with K-means for non-hierarchical clustering of big data. Simulated annealing (SA) is useful for diversified search in large search space and K-means is useful for converged search in predetermined search space. Our proposed method can balance the intensification and diversification to find the global optimal solution in big data clustering. The performance of HSA is validated using Iris, Wine, Glass, and Vowel UCI machine learning repository datasets comparing to previous studies by experiment and analysis. Our proposed KSAK (K-means+SA+K-means) and SAK (SA+K-means) are better than KSA(K-means+SA), SA, and K-means in our simulations. Our method has significantly improved accuracy and efficiency to find the global optimal data clustering solution for complex, real time, and costly data mining process.

Three clustering patterns among metabolic syndrome risk factors and their associations with dietary factors in Korean adolescents: based on the Korea National Health and Nutrition Examination Survey of 2007-2010

  • Yu, Yeon;Song, YoonJu
    • Nutrition Research and Practice
    • /
    • 제9권2호
    • /
    • pp.199-206
    • /
    • 2015
  • BACKGROUND/OBJECTIVE: Even though the prevalence of metabolic syndrome in adolescents is increasing, little is presently known about this syndrome in adolescents. This study aimed to cluster metabolic risk factors as well as examine the associations between identified patterns and nutrient intake using data from the Korean National Health Examination and Nutritional Assessment (KNHANES). SUBJECTS/METHODS: A total of 2,958 subjects aged 10 to 18 years along with both biochemical and dietary data information were obtained from KNHANES 2007-2010. Six components of metabolic syndrome were used to identify any patterns via factor analysis. Individuals were categorized into quartile groups according to their pattern score. RESULTS: Three clustering patterns with high loadings were identified and named as follows: 1) high blood pressure, 2) dyslipidemia, and 3) glucose abnormality patterns. The high blood pressure pattern showed high loadings of systolic and diastolic blood pressures, the dyslipidemia pattern showed high loadings of triglyceride and HDL-cholesterol levels, and the glucose abnormality pattern showed high loadings of fasting blood glucose levels. Intakes of fat and riboflavin were significantly decreased, whereas those of sodium and niacin were significantly increased across the quartiles in the dyslipidemia pattern. No nutrient intake except that of thiamin was significantly associated with the high blood pressure or glucose abnormality pattern. CONCLUSION: Our findings show that metabolic syndrome risk factors in the Korean adolescent population are characterized by three distinct patterns, which are differentially associated with dietary factors. Characterizing metabolic risk factors and providing specific dietary guidelines for target groups are important.

전력소비행위 변화를 위한 전력소비패턴 분석 및 적용 (Analysis and Application of Power Consumption Patterns for Changing the Power Consumption Behaviors)

  • 장민석;남광우;이연식
    • 한국정보통신학회논문지
    • /
    • 제25권4호
    • /
    • pp.603-610
    • /
    • 2021
  • 본 논문에서는 사용자의 전력소비패턴을 추출하고 사용자의 환경 및 감성을 적용한 최적 소비패턴을 모델링한 후, 이 두 가지의 패턴을 비교 적용하여 사용자의 전력소비행위 변화를 통한 전력의 효율적 사용 방법을 제시한다. 유의미한 소비패턴을 추출하기 위하여 벡터 표준화 및 이진 데이터 변환방법을 사용하고, k-평균 군집화를 적용한 앙상블의 합집합에 대한 학습과 k값에 따른 지지도를 적용하였으며, 최적 전력소비패턴 모델은 상대적 평균 소비량이 적은 앙상블 합집합에 대한 학습 결과를 기준으로 강제 및 감성 제어를 적용하여 생성하였다. 실험을 통하여 전력소비행위 변화 유도대상 추출 시 클러스터의 수와 일치율 간의 상관관계를 파악함으로써, 사용자의 의도에 따라 강제 및 감성 기반의 제어가 가능하도록 클러스터의 수나 크기 조절을 통한 다양한 윈도우에 적용할 수 있음을 검증하였다.

사용자 행위 클러스터링을 활용한 비정상 행위 탐지 (Anomaly Detection based on Clustering User's Behaviors)

  • 오상현;이원석
    • 한국정보처리학회논문지
    • /
    • 제7권8호
    • /
    • pp.2411-2420
    • /
    • 2000
  • 컴퓨터를 통한 침입을 효과적으로 탐지하기 위해서 많은 연구들이 오용탐지 기법을 개발하였다. 최근에는 오용 탐지 기법을 개선하기 위해서 비정상행위 탐지 기법에 관련된 연구들이 진행중이다. 이 논문에서는 비정상행위 탐지에서 사용자의 정상행위 패턴을 생성하기 위해 지지율에 기반한 새로운 클러스터링 알고리즘을 제시한다. 제시된 알고리즘에서는 사용자의 과거행위보다 최근행위에 보다 많은 비중을 두는 방법을 적용하였다. 한편, 사용자의 행위를 다양한 각도에서 분석될 수 있도록 사용자의 행위를 여러 판정요소로 분류하고 각 판정요소에 제시된 알고리즘을 이용하여 사용자의 정상행위 패턴을 생성한다. 결과적으로 사용자의 비정상행위가 효과적으로 탐지될 수 있다.

  • PDF

클러스터링을 이용한 스마트폰 사용자 추천 시스템 만들기 (Creating a Smartphone User Recommendation System Using Clustering)

  • Jin Hyoung AN
    • Journal of Korea Artificial Intelligence Association
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 2024
  • In this paper, we develop an AI-based recommendation system that matches the specifications of smartphones from company 'S'. The system aims to simplify the complex decision-making process of consumers and guide them to choose the smartphone that best suits their daily needs. The recommendation system analyzes five specifications of smartphones (price, battery capacity, weight, camera quality, capacity) to help users make informed decisions without searching for extensive information. This approach not only saves time but also improves user satisfaction by ensuring that the selected smartphone closely matches the user's lifestyle and needs. The system utilizes unsupervised learning, i.e. clustering (K-MEANS, DBSCAN, Hierarchical Clustering), and provides personalized recommendations by evaluating them with silhouette scores, ensuring accurate and reliable grouping of similar smartphone models. By leveraging advanced data analysis techniques, the system can identify subtle patterns and preferences that might not be immediately apparent to consumers, enhancing the overall user experience. The ultimate goal of this AI recommendation system is to simplify the smartphone selection process, making it more accessible and user-friendly for all consumers. This paper discusses the data collection, preprocessing, development, implementation, and potential impact of the system using Pandas, crawling, scikit-learn, etc., and highlights the benefits of helping consumers explore the various options available and confidently choose the smartphone that best suits their daily lives.

Defect Diagnosis of Cable Insulating Materials by Partial Discharge Statistical Analysis

  • Shin, Jong-Yeol;Park, Hee-Doo;Lee, Jong-Yong;Hong, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권1호
    • /
    • pp.42-47
    • /
    • 2010
  • Polymer insulating materials such as cross linked polyethylene (XLPE) are employed in electric cables used for extra high voltage. These materials can degrade due to chemical, mechanical and electric stress, possibly caused by voids, the presence of extrinsic materials and protrusions. Therefore, this study measured discharge patterns, discharge phase angle, quantity and occurrence frequency as well as changes in XLPE under different temperatures and applied voltages. To quantitatively analyze the irregular partial discharge patterns measured, the discharge patterns were examined using a statistical program. A three layer sample was fabricated, wherein the upper and lower layers were composed of non-void XLPE, while the middle layer was composed of an air void and copper particles. After heating to room temperature and $50^{\circ}C$ and $80^{\circ}C$ in silicone oil, partial discharge characteristics were studied by increasing the voltage from the inception voltage to the breakdown voltage. Partial discharge statistical analysis showed that when the K-means clustering was carried out at 9 kV to determine the void discharge characteristics, the amount discharged at low temperatures was small but when the temperature was increased to $80^{\circ}C$, the discharge amount increased to be 5.7 times more than that at room temperature because electric charge injection became easier. An analysis of the kurtosis and the skewness confirmed that positive and negative polarity had counterclockwise and clockwise clustering distribution, respectively. When 5 kV was applied to copper particles, the K-means was conducted as the temperature changed from $50^{\circ}C$ to $80^{\circ}C$. The amount of charge at a positive polarity increased 20.3% and the amount of charge at a negative polarity increased 54.9%. The clustering distribution of a positive polarity and negative polarity showed a straight line in the kurtosis and skewness analyses.

기종점 모빌리티 데이터 기반 클러스터링 기법을 활용한 지역 모빌리티의 공간적 특성 분석 연구 (A Study on the Analysis of Spatial Characteristics with Respect to Regional Mobility Using Clustering Technique Based on Origin-Destination Mobility Data)

  • 이동훈;안용준
    • 한국ITS학회 논문지
    • /
    • 제22권1호
    • /
    • pp.219-232
    • /
    • 2023
  • 모빌리티 서비스는 구축 대상 지역의 특성과 여건에 따라 변화할 필요가 있다. 이를 위해서는 해당 지역의 통행행태를 기종점 자료에 반영하여 모빌리티 패턴 및 특성 분석이 요구된다. 그러나 종래의 경우 행정 구역 기반의 존 체계를 기반으로 집계된 기종점 자료를 이용함에 따라 공간적 동질성을 담보하기 어렵기 때문에 신규 모빌리티와 같은 특수 목적성을 보이는 수단에 대한 본연의 통행 특성 분석에 한계가 있다. 이에 본 연구는 기존 존 체계에서 벗어나 데이터 기반의 클러스터링 기법 적용을 통해 설정된 집계 방식을 도출하여 기종점 통행패턴에 대한 공간적 분석을 수행한다. 제안 방법은 대중교통버스 및 택시와 같은 종래의 교통수단 뿐만 아니라 도심형 수요응답형 버스와 같은 신규 모빌리티 서비스에 대한 기종점 데이터 본연의 특징 벡터들을 기반으로 클러스터링을 하여 유사 공간적 특성을 반영한 지역 모빌리티의 이용 특성 분석을 가능하게 한다.

공간데이타 마이닝을 위한 효율적인 그리드 셀 기반 공간 클러스터링 알고리즘 (An Efficient Grid Cell Based Spatial Clustering Algorithm for Spatial Data Mining)

  • 문상호;이동규;서영덕
    • 정보처리학회논문지D
    • /
    • 제10D권4호
    • /
    • pp.567-576
    • /
    • 2003
  • 대용량의 공간데이터베이스로부터 암시적이고 유용한 지식을 자동적으로 추출하는 공간데이터 마이닝은 데이타 양이 급격히 증가하면서 필요성이 더욱 증대되고 있다. 공간데이터 마이닝에서 데이타를 분석하여 유사한 그룹으로 분류하는 공간 클러스터링은 매우 중요한 분야이다. 기존 연구에서 공간 클러스터링을 위한 여러 가지 알고리즘들이 제시되었지만, 다음과 같은 문제점들이 있다. 먼저 클러스터링을 위하여 객체들 간의 거리론 기반으로 하므로 데이타 양이 많아질수록 계산 비용이 커진다. 또한, 메모리 상주 데이타를 대상으로 하므로 대용량의 데이타인 경우에 효율이 떨어진다. 본 논문에서는 공간데이터 마이닝을 위하여 그리드 셀을 기반으로 한 효율적인 공간 클러스터링 방법을 제시한다. 이 클러스터링에서는 기존 공간 클러스터링 기법들의 문제점을 해결하는데 중점을 둔다. 세부적으로 공간 클러스터링의 효율성을 높이기 위하여 클러스터링시에 발생하는 비용(계산량)을 감소시키는 것이다. 이를 위해서 공간지역성을 보장하는 대표적인 공간분할 방법인 그리드 셀을 기반으로 한 공간 클러스터링 기법을 제시한다.

통행시간 분포 기반의 전철역 클러스터링 (Metro Station Clustering based on Travel-Time Distributions)

  • 공인택;김동윤;민윤홍
    • 한국전자거래학회지
    • /
    • 제27권2호
    • /
    • pp.193-204
    • /
    • 2022
  • 스마트교통카드 데이터는 대표적인 모빌리티 데이터로 이를 이용하여 대중교통 이용행태를 분석하고 정책 개발에 활용할 수 있다. 본 논문은 이러한 연구의 하나로 전철 이용패턴을 이용하여 전철역들을 분류하는 문제를 다룬다. 전철역의 클러스터링을 다룬 기존 논문들은 이용행태 중 통행량만을 고려하였기에 본 논문은 이에 대한 보완적인 방법의 하나로 통행시간을 고려한 클러스터링을 제안한다. 각 역의 승객들을 출근 시간 출발, 출근 시간 도착, 퇴근 시간 출발, 퇴근 시간 도착 승객들로 분류한 다음 각각의 통행시간을 와이블 분포로 모형화하여 추정한 형상모수를 역의 특성값으로 정의하였다. 그리고 특성 벡터들을 K-평균 클러스터링 기법을 사용하여 클러스터링하였다. 실험결과 통행시간을 고려하여 역의 클러스터링을 수행하면 기존 연구의 클러스터링 결과와 유사한 결과가 나올 뿐만 아니라 더 세분화 된 클러스터링이 가능함을 관찰하였다.