Recently, distribution load analysis using AMR (Automatic Meter Reading) data is researched in electric utilities. Load analysis method based on AMR system generates the typical load profile using load data of AMR customers, estimates the load profile of non-AMR customers, and analyzes the peak load and load profile of the distribution circuits and sectors per every 15 minutes/hour/day/week/month. Typical load profile is generated by the algorithm calculating the average amount of power consumption of each groups having similar load patterns. Traditional customer clustering mechanism uses only contract type code as a key. This mechanism has low accuracy because many customers having same contract code have different load patterns. In this research, We propose a customer clustring mechanism using k-means algorithm with contract type code and AMR data.
Data clustering determines a group of patterns using similarity measure in a dataset and is one of the most important and difficult technique in data mining. Clustering can be formally considered as a particular kind of NP-hard grouping problem. K-means algorithm which is popular and efficient, is sensitive for initialization and has the possibility to be stuck in local optimum because of hill climbing clustering method. This method is also not computationally feasible in practice, especially for large datasets and large number of clusters. Therefore, we need a robust and efficient clustering algorithm to find the global optimum (not local optimum) especially when much data is collected from many IoT (Internet of Things) devices in these days. The objective of this paper is to propose new Hybrid Simulated Annealing (HSA) which is combined simulated annealing with K-means for non-hierarchical clustering of big data. Simulated annealing (SA) is useful for diversified search in large search space and K-means is useful for converged search in predetermined search space. Our proposed method can balance the intensification and diversification to find the global optimal solution in big data clustering. The performance of HSA is validated using Iris, Wine, Glass, and Vowel UCI machine learning repository datasets comparing to previous studies by experiment and analysis. Our proposed KSAK (K-means+SA+K-means) and SAK (SA+K-means) are better than KSA(K-means+SA), SA, and K-means in our simulations. Our method has significantly improved accuracy and efficiency to find the global optimal data clustering solution for complex, real time, and costly data mining process.
BACKGROUND/OBJECTIVE: Even though the prevalence of metabolic syndrome in adolescents is increasing, little is presently known about this syndrome in adolescents. This study aimed to cluster metabolic risk factors as well as examine the associations between identified patterns and nutrient intake using data from the Korean National Health Examination and Nutritional Assessment (KNHANES). SUBJECTS/METHODS: A total of 2,958 subjects aged 10 to 18 years along with both biochemical and dietary data information were obtained from KNHANES 2007-2010. Six components of metabolic syndrome were used to identify any patterns via factor analysis. Individuals were categorized into quartile groups according to their pattern score. RESULTS: Three clustering patterns with high loadings were identified and named as follows: 1) high blood pressure, 2) dyslipidemia, and 3) glucose abnormality patterns. The high blood pressure pattern showed high loadings of systolic and diastolic blood pressures, the dyslipidemia pattern showed high loadings of triglyceride and HDL-cholesterol levels, and the glucose abnormality pattern showed high loadings of fasting blood glucose levels. Intakes of fat and riboflavin were significantly decreased, whereas those of sodium and niacin were significantly increased across the quartiles in the dyslipidemia pattern. No nutrient intake except that of thiamin was significantly associated with the high blood pressure or glucose abnormality pattern. CONCLUSION: Our findings show that metabolic syndrome risk factors in the Korean adolescent population are characterized by three distinct patterns, which are differentially associated with dietary factors. Characterizing metabolic risk factors and providing specific dietary guidelines for target groups are important.
본 논문에서는 사용자의 전력소비패턴을 추출하고 사용자의 환경 및 감성을 적용한 최적 소비패턴을 모델링한 후, 이 두 가지의 패턴을 비교 적용하여 사용자의 전력소비행위 변화를 통한 전력의 효율적 사용 방법을 제시한다. 유의미한 소비패턴을 추출하기 위하여 벡터 표준화 및 이진 데이터 변환방법을 사용하고, k-평균 군집화를 적용한 앙상블의 합집합에 대한 학습과 k값에 따른 지지도를 적용하였으며, 최적 전력소비패턴 모델은 상대적 평균 소비량이 적은 앙상블 합집합에 대한 학습 결과를 기준으로 강제 및 감성 제어를 적용하여 생성하였다. 실험을 통하여 전력소비행위 변화 유도대상 추출 시 클러스터의 수와 일치율 간의 상관관계를 파악함으로써, 사용자의 의도에 따라 강제 및 감성 기반의 제어가 가능하도록 클러스터의 수나 크기 조절을 통한 다양한 윈도우에 적용할 수 있음을 검증하였다.
컴퓨터를 통한 침입을 효과적으로 탐지하기 위해서 많은 연구들이 오용탐지 기법을 개발하였다. 최근에는 오용 탐지 기법을 개선하기 위해서 비정상행위 탐지 기법에 관련된 연구들이 진행중이다. 이 논문에서는 비정상행위 탐지에서 사용자의 정상행위 패턴을 생성하기 위해 지지율에 기반한 새로운 클러스터링 알고리즘을 제시한다. 제시된 알고리즘에서는 사용자의 과거행위보다 최근행위에 보다 많은 비중을 두는 방법을 적용하였다. 한편, 사용자의 행위를 다양한 각도에서 분석될 수 있도록 사용자의 행위를 여러 판정요소로 분류하고 각 판정요소에 제시된 알고리즘을 이용하여 사용자의 정상행위 패턴을 생성한다. 결과적으로 사용자의 비정상행위가 효과적으로 탐지될 수 있다.
Journal of Korea Artificial Intelligence Association
/
제2권1호
/
pp.1-6
/
2024
In this paper, we develop an AI-based recommendation system that matches the specifications of smartphones from company 'S'. The system aims to simplify the complex decision-making process of consumers and guide them to choose the smartphone that best suits their daily needs. The recommendation system analyzes five specifications of smartphones (price, battery capacity, weight, camera quality, capacity) to help users make informed decisions without searching for extensive information. This approach not only saves time but also improves user satisfaction by ensuring that the selected smartphone closely matches the user's lifestyle and needs. The system utilizes unsupervised learning, i.e. clustering (K-MEANS, DBSCAN, Hierarchical Clustering), and provides personalized recommendations by evaluating them with silhouette scores, ensuring accurate and reliable grouping of similar smartphone models. By leveraging advanced data analysis techniques, the system can identify subtle patterns and preferences that might not be immediately apparent to consumers, enhancing the overall user experience. The ultimate goal of this AI recommendation system is to simplify the smartphone selection process, making it more accessible and user-friendly for all consumers. This paper discusses the data collection, preprocessing, development, implementation, and potential impact of the system using Pandas, crawling, scikit-learn, etc., and highlights the benefits of helping consumers explore the various options available and confidently choose the smartphone that best suits their daily lives.
Transactions on Electrical and Electronic Materials
/
제11권1호
/
pp.42-47
/
2010
Polymer insulating materials such as cross linked polyethylene (XLPE) are employed in electric cables used for extra high voltage. These materials can degrade due to chemical, mechanical and electric stress, possibly caused by voids, the presence of extrinsic materials and protrusions. Therefore, this study measured discharge patterns, discharge phase angle, quantity and occurrence frequency as well as changes in XLPE under different temperatures and applied voltages. To quantitatively analyze the irregular partial discharge patterns measured, the discharge patterns were examined using a statistical program. A three layer sample was fabricated, wherein the upper and lower layers were composed of non-void XLPE, while the middle layer was composed of an air void and copper particles. After heating to room temperature and $50^{\circ}C$ and $80^{\circ}C$ in silicone oil, partial discharge characteristics were studied by increasing the voltage from the inception voltage to the breakdown voltage. Partial discharge statistical analysis showed that when the K-means clustering was carried out at 9 kV to determine the void discharge characteristics, the amount discharged at low temperatures was small but when the temperature was increased to $80^{\circ}C$, the discharge amount increased to be 5.7 times more than that at room temperature because electric charge injection became easier. An analysis of the kurtosis and the skewness confirmed that positive and negative polarity had counterclockwise and clockwise clustering distribution, respectively. When 5 kV was applied to copper particles, the K-means was conducted as the temperature changed from $50^{\circ}C$ to $80^{\circ}C$. The amount of charge at a positive polarity increased 20.3% and the amount of charge at a negative polarity increased 54.9%. The clustering distribution of a positive polarity and negative polarity showed a straight line in the kurtosis and skewness analyses.
모빌리티 서비스는 구축 대상 지역의 특성과 여건에 따라 변화할 필요가 있다. 이를 위해서는 해당 지역의 통행행태를 기종점 자료에 반영하여 모빌리티 패턴 및 특성 분석이 요구된다. 그러나 종래의 경우 행정 구역 기반의 존 체계를 기반으로 집계된 기종점 자료를 이용함에 따라 공간적 동질성을 담보하기 어렵기 때문에 신규 모빌리티와 같은 특수 목적성을 보이는 수단에 대한 본연의 통행 특성 분석에 한계가 있다. 이에 본 연구는 기존 존 체계에서 벗어나 데이터 기반의 클러스터링 기법 적용을 통해 설정된 집계 방식을 도출하여 기종점 통행패턴에 대한 공간적 분석을 수행한다. 제안 방법은 대중교통버스 및 택시와 같은 종래의 교통수단 뿐만 아니라 도심형 수요응답형 버스와 같은 신규 모빌리티 서비스에 대한 기종점 데이터 본연의 특징 벡터들을 기반으로 클러스터링을 하여 유사 공간적 특성을 반영한 지역 모빌리티의 이용 특성 분석을 가능하게 한다.
대용량의 공간데이터베이스로부터 암시적이고 유용한 지식을 자동적으로 추출하는 공간데이터 마이닝은 데이타 양이 급격히 증가하면서 필요성이 더욱 증대되고 있다. 공간데이터 마이닝에서 데이타를 분석하여 유사한 그룹으로 분류하는 공간 클러스터링은 매우 중요한 분야이다. 기존 연구에서 공간 클러스터링을 위한 여러 가지 알고리즘들이 제시되었지만, 다음과 같은 문제점들이 있다. 먼저 클러스터링을 위하여 객체들 간의 거리론 기반으로 하므로 데이타 양이 많아질수록 계산 비용이 커진다. 또한, 메모리 상주 데이타를 대상으로 하므로 대용량의 데이타인 경우에 효율이 떨어진다. 본 논문에서는 공간데이터 마이닝을 위하여 그리드 셀을 기반으로 한 효율적인 공간 클러스터링 방법을 제시한다. 이 클러스터링에서는 기존 공간 클러스터링 기법들의 문제점을 해결하는데 중점을 둔다. 세부적으로 공간 클러스터링의 효율성을 높이기 위하여 클러스터링시에 발생하는 비용(계산량)을 감소시키는 것이다. 이를 위해서 공간지역성을 보장하는 대표적인 공간분할 방법인 그리드 셀을 기반으로 한 공간 클러스터링 기법을 제시한다.
스마트교통카드 데이터는 대표적인 모빌리티 데이터로 이를 이용하여 대중교통 이용행태를 분석하고 정책 개발에 활용할 수 있다. 본 논문은 이러한 연구의 하나로 전철 이용패턴을 이용하여 전철역들을 분류하는 문제를 다룬다. 전철역의 클러스터링을 다룬 기존 논문들은 이용행태 중 통행량만을 고려하였기에 본 논문은 이에 대한 보완적인 방법의 하나로 통행시간을 고려한 클러스터링을 제안한다. 각 역의 승객들을 출근 시간 출발, 출근 시간 도착, 퇴근 시간 출발, 퇴근 시간 도착 승객들로 분류한 다음 각각의 통행시간을 와이블 분포로 모형화하여 추정한 형상모수를 역의 특성값으로 정의하였다. 그리고 특성 벡터들을 K-평균 클러스터링 기법을 사용하여 클러스터링하였다. 실험결과 통행시간을 고려하여 역의 클러스터링을 수행하면 기존 연구의 클러스터링 결과와 유사한 결과가 나올 뿐만 아니라 더 세분화 된 클러스터링이 가능함을 관찰하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.