The Journal of Korean Institute of Communications and Information Sciences
/
v.31
no.9C
/
pp.853-858
/
2006
TMHMM(Tied Mixture Hidden Markov Model) is an important approach to reduce the number of free parameters in speech recognition. However, this model suffers from a degradation in recognition accuracy due to its GPDF (Gaussian Probability Density Function) clustering error. This paper proposes a clustering algorithm, called HCNN(Homogeneous Centroid Neural network), to cluster acoustic feature vectors in TMHMM. Moreover, the HCNN uses the heterogeneous distance measure to allocate more code vectors in the heterogeneous areas where probability densities of different states overlap each other. When applied to Korean digit isolated word recognition, the HCNN reduces the error rate by 9.39% over CNN clustering, and 14.63% over the traditional K-means clustering.
Kim, Jeong-Hwan;Kim, Dong-Jun;Lee, Jeong-Whan;Kim, Kyeong-Seop
The Transactions of The Korean Institute of Electrical Engineers
/
v.66
no.7
/
pp.1072-1077
/
2017
Mean-reverting analysis refers to a way of estimating the underlining tendency after new data has evoked the variation in the equilibrium state. In this paper, we propose a new method to interpret the specular portraits of Premature Ventricular Contraction(PVC) arrhythmia by applying K-means unsupervised learning algorithm on electrocardiogram(ECG) data. Aiming at this purpose, we applied a mean-reverting model to analyse Heart Rate Variability(HRV) in terms of the modified poincare plot by considering PVC rhythm as the component of disrupting the homeostasis state. Based on our experimental tests on MIT-BIH ECG database, we can find the fact that the specular patterns portraited by K-means clustering on mean-reverting HRV data can be more clearly visible and the Euclidean metric can be used to identify the discrepancy between the normal sinus rhythm and PVC beats by the relative distance among cluster-centroids.
Proceedings of the Korean Institute of Building Construction Conference
/
2020.06a
/
pp.206-207
/
2020
Accurate estimation of concrete strength development at early ages is a critical factor to secure structural stability as well as to speed up the construction process. The temperature generated from the heat of hydration is considered as a key parameter in predicting the early age strength. Conventionally, concrete temperature has been measured by temperature sensors installed inside concrete. However, considering the measurement on building structures with multiple floors, this method requires reinstallation and repositioning of hardware such as sensors, data loggers and routers for data transfer. This makes the temperature monitoring work cumbersome and inefficient. Concrete temperature monitoring by using thermal remote sensing can be an effective alternative to supplement those shortcomings. In this study, image processing was carried out through K-means clustering technique, which is a unsupervised learning method, and the classification results were analyzed accordingly. In the future, research will be conducted on how to automatically recognize concrete among various objects by using deep learning techniques.
We present a possible bias in the estimation of velocity dispersions for galaxy groups due to the contribution of subgroups which are infalling into the groups. We execute a systematic search for flux-limited galaxy groups and subgroups based on the spectroscopic galaxies with r < 17.77 mag of SDSS data release 12, by using DBSCAN (Density-Based Spatial Clustering of Application with Noise) and Hierarchical Clustering Method which are well known unsupervised machine learning algorithm. A total of 2042 groups with at least 10 members are found and ~20% of groups have subgroups. We found that the estimation of velocity dispersions of groups using total galaxies including those in subgroups are underestimated by ~10% compared to the case of using only galaxies in main groups. This result suggests that the subgroups should be properly considered for mass measurement of galaxy groups based on the velocity dispersion.
Kim Jung-Hyun;Ahn Soo-Han;Won You-Jip;Lee Jong-Moon;Lee Eun-Young
Journal of KIISE:Information Networking
/
v.33
no.3
/
pp.201-217
/
2006
In this paper, we collected the physical traces from high speed Internet backbone traffic and analyze the various characteristics of the underlying packet traces. Particularly, our work is focused on analyzing the characteristics of an anomalous traffic. It is found that in our data, the anomalous traffic is caused by UDP session traffic and we determined that it was one of the Denial of Service attacks. In this work, we adopted the unsupervised machine learning algorithm to classify the network flows. We apply the k-means clustering algorithm to train the learner. Via the Cramer-Yon-Misses test, we confirmed that the proposed classification method which is able to detect anomalous traffic within 1 second can accurately predict the class of a flow and can be effectively used in determining the anomalous flows.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.48
no.5
/
pp.45-51
/
2011
In this paper, we propose an unsupervised learning method for modeling motion trajectory patterns effectively. In our approach, observations of an object on a trajectory are treated as words in a document for latent dirichlet allocation algorithm which is used for clustering words on the topic in natural language process. This allows clustering topics (e.g. go straight, turn left, turn right) effectively in complex scenes, such as crossroads. After this procedure, we learn patterns of word sequences in each cluster using Baum-Welch algorithm used to find the unknown parameters in a hidden markov model. Evaluation of abnormality can be done using forward algorithm by comparing learned sequence and input sequence. Results of experiments show that modeling of semantic region is robust against noise in various scene.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.10a
/
pp.248-249
/
2015
Clustering is one of the most important unsupervised learning methods that clusters data into homogeneous groups. However, cluster centers tend leaning to high density clusters because clustering is based on the distances between data points and cluster centers. In this paper, a modified clustering method forcing cluster centers to be apart by introducing a center-scattering term in the Fuzzy C-Means objective function is introduced. The proposed method converges more to real centers with small number of iterations compared to the original one. All the strengths can be verified with experimental results.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.329-331
/
2021
Recently, as various cases of using deep learning in the health-care field are increasing, functions such as electrocardiogram examination and body composition analysis through wearable device can be provided to provide rational decision-making and a process tailored to the individual. In order to utilize deep learning, it it most important to secure refined data, and this data is being made through human intervention or unsupervised learning. In this paper, we propose a model that conducts unsupervised learning by clusters according to gender and age using human body data such as chest and waist circumferences, which are easy to measure, and classifies them with CNN. For data, the 7th human body data provided by Korean Agency for Technology and Standards was used. Through this, it it thought that it can be applied to various application cases such as personalized body shape management service and obesity analysis.
Seonghwan Park;Minseok Kim;Eunseo Baek;Junghoon Park
Smart Media Journal
/
v.12
no.11
/
pp.36-47
/
2023
Industrial Control System(ICS), which controls facilities at major industrial sites, is increasingly connected to other systems through networks. With this integration and the development of intelligent attacks that can lead to a single external intrusion as a whole system paralysis, the risk and impact of security on industrial control systems are increasing. As a result, research on how to protect and detect cyber attacks is actively underway, and deep learning models in the form of unsupervised learning have achieved a lot, and many abnormal detection technologies based on deep learning are being introduced. In this study, we emphasize the application of preprocessing methodologies to enhance the anomaly detection performance of deep learning models on time series data. The results demonstrate the effectiveness of a Wavelet Transform (WT)-based noise reduction methodology as a preprocessing technique for deep learning-based anomaly detection. Particularly, by incorporating sensor characteristics through clustering, the differential application of the Dual-Tree Complex Wavelet Transform proves to be the most effective approach in improving the detection performance of cyber attacks.
International Journal of Advanced Culture Technology
/
v.8
no.4
/
pp.167-176
/
2020
Recommendation Systems is the top requirements for many people and researchers for the need required by them with the proper suggestion with their personal indeed, sorting and suggesting doctor to the patient. Most of the rating prediction in recommendation systems are based on patient's feedback with their information regarding their treatment. Patient's preferences will be based on the historical behaviour of similar patients. The similarity between the patients is generally measured by the patient's feedback with the information about the doctor with the treatment methods with their success rate. This paper presents a new method of predicting Top Ranked Doctor's in recommendation systems. The proposed Recommendation system starts by identifying the similar doctor based on the patients' health requirements and cluster them using K-Means Efficient Clustering. Our proposed K-Means Clustering with Content Based Doctor Recommendation for Cancer (KMC-CBD) helps users to find an optimal solution. The core component of KMC-CBD Recommended system suggests patients with top recommended doctors similar to the other patients who already treated with that doctor and supports the choice of the doctor and the hospital for the patient requirements and their health condition. The recommendation System first computes K-Means Clustering is an unsupervised learning among Doctors according to their profile and list the Doctors according to their Medical profile. Then the Content based doctor recommendation System generates a Top rated list of doctors for the given patient profile by exploiting health data shared by the crowd internet community. Patients can find the most similar patients, so that they can analyze how they are treated for the similar diseases, and they can send and receive suggestions to solve their health issues. In order to the improve Recommendation system efficiency, the patient can express their health information by a natural-language sentence. The Recommendation system analyze and identifies the most relevant medical area for that specific case and uses this information for the recommendation task. Provided by users as well as the recommended system to suggest the right doctors for a specific health problem. Our proposed system is implemented in Python with necessary functions and dataset.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.