• Title/Summary/Keyword: clustering algorithms

Search Result 611, Processing Time 0.03 seconds

An Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 계층적 클러스터링 알고리즘)

  • Cha, Si-Ho;Lee, Jong-Eon;Choi, Seok-Man
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • Clustering allows hierarchical structures to be built on the nodes and enables more efficient use of scarce resources, such as frequency spectrum, bandwidth, and energy in wireless sensor networks (WSNs). This paper proposes a hierarchical clustering algorithm called EEHC which is more energy efficient than existing algorithms for WSNs, It introduces region node selection as well as cluster head election based on the residual battery capacity of nodes to reduce the costs of managing sensor nodes and of the communication among them. The role of cluster heads or region nodes is rotated among nodes to achieve load balancing and extend the lifetime of every individual sensor node. To do this, EEHC clusters periodically to select cluster heads that are richer in residual energy level, compared to the other nodes, according to clustering policies from administrators. To prove the performance improvement of EEHC, the ns-2 simulator was used. The results show that it can reduce the energy and bandwidth consumption for organizing and managing WSNs comparing it with existing algorithms.

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.

A study on the process of mapping data and conversion software using PC-clustering (PC-clustering을 이용한 매핑자료처리 및 변환소프트웨어에 관한 연구)

  • WhanBo, Taeg-Keun;Lee, Byung-Wook;Park, Hong-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.2 s.14
    • /
    • pp.123-132
    • /
    • 1999
  • With the rapid increases of the amount of data and computing, the parallelization of the computing algorithm becomes necessary more than ever. However the parallelization had been conducted mostly in a super-computer until the rod 1990s, it was not for the general users due to the high price, the complexity of usage, and etc. A new concept for the parallel processing has been emerged in the form of K-clustering form the late 1990s, it becomes an excellent alternative for the applications need high computer power with a relative low cost although the installation and the usage are still difficult to the general users. The mapping algorithms (cut, join, resizing, warping, conversion from raster to vector and vice versa, etc) in GIS are well suited for the parallelization due to the characteristics of the data structure. If those algorithms are manipulated using PC-clustering, the result will be satisfiable in terms of cost and performance since they are processed in real flu with a low cos4 In this paper the tools and the libraries for the parallel processing and PC-clustering we introduced and how those tools and libraries are applied to mapping algorithms in GIS are showed. Parallel programs are developed for the mapping algorithms and the result of the experiments shows that the performance in most algorithms increases almost linearly according to the number of node.

  • PDF

Smallest-Small-World Cellular Genetic Algorithms (최소좁은세상 셀룰러 유전알고리즘)

  • Kang, Tae-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.11
    • /
    • pp.971-983
    • /
    • 2007
  • Cellular Genetic Algorithms(CGAs) are a subclass of Genetic Algorithms(GAs) in which each individuals are placed in a given geographical distribution. In general, CGAs# population space is a regular network that has relatively long characteristic path length and high clustering coefficient in the view of the Networks Theory. Long average path length makes the genetic interaction of remote nodes slow. If we have the population#s path length shorter with keeping the high clustering coefficient value, CGAs# population space will converge faster without loss of diversity. In this paper, we propose Smallest-Small-World Cellular Genetic Algorithms(SSWCGAs). In SSWCGAs, each individual lives in a population space that is highly clustered but having shorter characteristic path length, so that the SSWCGAs promote exploration of the search space with no loss of exploitation tendency that comes from being clustered. Some experiments along with four real variable functions and two GA-hard problems show that the SSWCGAs are more effective than SGAs and CGAs.

Comparison of time series clustering methods and application to power consumption pattern clustering

  • Kim, Jaehwi;Kim, Jaehee
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.6
    • /
    • pp.589-602
    • /
    • 2020
  • The development of smart grids has enabled the easy collection of a large amount of power data. There are some common patterns that make it useful to cluster power consumption patterns when analyzing s power big data. In this paper, clustering analysis is based on distance functions for time series and clustering algorithms to discover patterns for power consumption data. In clustering, we use 10 distance measures to find the clusters that consider the characteristics of time series data. A simulation study is done to compare the distance measures for clustering. Cluster validity measures are also calculated and compared such as error rate, similarity index, Dunn index and silhouette values. Real power consumption data are used for clustering, with five distance measures whose performances are better than others in the simulation.

Efficient Clustering Algorithm based on Data Entropy for Changing Environment (상황변화에 따른 엔트로피 기반의 클러스터 구성 알고리즘)

  • Choi, Yun-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3675-3681
    • /
    • 2009
  • One of the most important factors in the lifetime of WSN(Wireless Sensor Network) is the limited resources and static control problem of the sensor nodes. In order to achieve energy efficiency and network utilities, sensor nodes can be well organized into one cluster and selected head node and normal node by dynamic conditions. Various clustering algorithms have been proposed as an efficient way to organize method based on LEACH algorithm. In this paper, we propose an efficient clustering algorithm using information entropy theory based on LEACH algorithm, which is able to recognize environmental differences according to changes from data of sensor nodes. To measure and analyze the changes of clusters, we simply compute the entropy of sensor data and applied it to probability based clustering algorithm. In experiments, we simulate the proposed method and LEACH algorithm. We have shown that our data balanced and energy efficient scheme, has high energy efficiency and network lifetime in two conditions.

Three Effective Top-Down Clustering Algorithms for Location Database Systems

  • Lee, Kwang-Jo;Yang, Sung-Bong
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.2
    • /
    • pp.173-187
    • /
    • 2010
  • Recent technological advances in mobile communication systems have made explosive growth in the number of mobile device users worldwide. One of the most important issues in designing a mobile computing system is location management of users. The hierarchical systems had been proposed to solve the scalability problem in location management. The scalability problem occurs when there are too many users for a mobile system to handle, as the system is likely to react slow or even get down due to late updates of the location databases. In this paper, we propose a top-down clustering algorithm for hierarchical location database systems in a wireless network. A hierarchical location database system employs a tree structure. The proposed algorithm uses a top-down approach and utilizes the number of visits to each cell made by the users along with the movement information between a pair of adjacent cells. We then present a modified algorithm by incorporating the exhaustive method when there remain a few levels of the tree to be processed. We also propose a capacity constraint top-down clustering algorithm for more realistic environments where a database has a capacity limit. By the capacity of a database we mean the maximum number of mobile device users in the cells that can be handled by the database. This algorithm reduces a number of databases used for the system and improves the update performance. The experimental results show that the proposed, top-down, modified top-down, and capacity constraint top-down clustering algorithms reduce the update cost by 17.0%, 18.0%, 24.1%, the update time by about 43.0%, 39.0%, 42.3%, respectively. The capacity constraint algorithm reduces the average number of databases used for the system by 23.9% over other algorithms.

An Enhanced Spatial Fuzzy C-Means Algorithm for Image Segmentation (영상 분할을 위한 개선된 공간적 퍼지 클러스터링 알고리즘)

  • Truong, Tung X.;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • Conventional fuzzy c-means (FCM) algorithms have achieved a good clustering performance. However, they do not fully utilize the spatial information in the image and this results in lower clustering performance for images that have low contrast, vague boundaries, and noises. To overcome this issue, we propose an enhanced spatial fuzzy c-means (ESFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors in a $3{\times}3$ square window. To evaluate between the proposed ESFCM and various FCM based segmentation algorithms, we utilized clustering validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), and Xie-Bdni function ($V_{xb}$). Experimental results show that the proposed ESFCM outperforms other FCM based algorithms in terms of clustering validity functions.

An Efficient Grid Cell Based Spatial Clustering Algorithm for Spatial Data Mining (공간데이타 마이닝을 위한 효율적인 그리드 셀 기반 공간 클러스터링 알고리즘)

  • Moon, Sang-Ho;Lee, Dong-Gyu;Seo, Young-Duck
    • The KIPS Transactions:PartD
    • /
    • v.10D no.4
    • /
    • pp.567-576
    • /
    • 2003
  • Spatial data mining, i.e., discovery of interesting characteristics and patterns that may implicitly exists in spatial databases, is a challenging task due to the huge amounts of spatial data. Clustering algorithms are attractive for the task of class identification in spatial databases. Several methods for spatial clustering have been presented in recent years, but have the following several drawbacks increase costs due to computing distance among objects and process only memory-resident data. In this paper, we propose an efficient grid cell based spatial clustering method for spatial data mining. It focuses on resolving disadvantages of existing clustering algorithms. In details, it aims to reduce cost further for good efficiency on large databases. To do this, we devise a spatial clustering algorithm based on grid ceil structures including cell relationships.

Clustering of 2D-Gel Images

  • Hur, Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.746-749
    • /
    • 2003
  • Alignment of 2D-gel images of biological samples can visualize the difference of expression profiles and also inform us candidates of protein spots to be further analyzed. However, comparison of two proteome images between case and control does not always successfully identify differentially expressed proteins due to sample-to-sample variation. Because of poor reproducibility of 2D-gel electrophoresis, sample-by-sample variations and inconsistent electrophoresis conditions, multiple number of 2D-gel image must be processed to align each other to visualize the difference of expression profiles and to deduce the protein spots differentially expressed with reliability. Alignment of multiple 2D-Gel images and their clustering were carried out by applying various algorithms and statistical methods. In order to align multiple images, multiresolution-multilevel algorithm was found out to be suitable for fast alignment and for distorted images. Clustering of 12 different images implementing a k-means algorithm gives a phylogenetic tree of distance map of the proteomes. Microsoft Visual C++ was used to implement the algorithms in this work.

  • PDF