• Title/Summary/Keyword: clustering algorithms

Search Result 606, Processing Time 0.043 seconds

Performance Evaluation of Pixel Clustering Approaches for Automatic Detection of Small Bowel Obstruction from Abdominal Radiographs

  • Kim, Kwang Baek
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.153-159
    • /
    • 2022
  • Plain radiographic analysis is the initial imaging modality for suspected small bowel obstruction. Among the many features that affect the diagnosis of small bowel obstruction (SBO), the presence of gas-filled or fluid-filled small bowel loops is the most salient feature that can be automatized by computer vision algorithms. In this study, we compare three frequently applied pixel-clustering algorithms for extracting gas-filled areas without human intervention. In a comparison involving 40 suspected SBO cases, the Possibilistic C-Means and Fuzzy C-Means algorithms exhibited initialization-sensitivity problems and difficulties coping with low intensity contrast, achieving low 72.5% and 85% success rates in extraction. The Adaptive Resonance Theory 2 algorithm is the most suitable algorithm for gas-filled region detection, achieving a 100% success rate on 40 tested images, largely owing to its dynamic control of the number of clusters.

Modeling Planned Maintenance Outage of Generators Based on Advanced Demand Clustering Algorithms (개선된 수요 클러스터링 기법을 이용한 발전기 보수정지계획 모델링)

  • Kim, Jin-Ho;Park, Jong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.4
    • /
    • pp.172-178
    • /
    • 2006
  • In this paper, an advanced demand clustering algorithm which can explore the planned maintenance outage of generators in changed electricity industry is proposed. The major contribution of this paper can be captured in the development of the long-term estimates for the generation availability considering planned maintenance outage. Two conflicting viewpoints, one of which is reliability-focused and the other is economy-focused, are incorporated in the development of estimates of maintenance outage based on the advanced demand clustering algorithm. Based on the advanced clustering algorithm, in each demand cluster, conventional effective outage of generators which conceptually capture maintenance and forced outage of generators, are newly defined in order to properly address the characteristic of the planned maintenance outage in changed electricity markets. First, initial market demand is classified into multiple demand clusters, which are defined by the effective outage rates of generators and by the inherent characteristic of the initial demand. Then, based on the advanced demand clustering algorithm, the planned maintenance outages and corresponding effective outages of generators are reevaluated. Finally, the conventional demand clusters are newly classified in order to reflect the improved effective outages of generation markets. We have found that the revision of the demand clusters can change the number of the initial demand clusters, which cannot be captured in the conventional demand clustering process. Therefore, it can be seen that electricity market situations, which can also be classified into several groups which show similar patterns, can be more accurately clustered. From this the fundamental characteristics of power systems can be more efficiently analyzed, for this advanced classification can be widely applicable to other technical problems in power systems such as generation scheduling, power flow analysis, price forecasts, and so on.

A K-means-like Algorithm for K-medoids Clustering

  • Lee, Jong-Seok;Park, Hae-Sang;Jun, Chi-Hyeok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.51-54
    • /
    • 2005
  • Clustering analysis is a descriptive task that seeks to identify homogeneous groups of objects based on the values of their attributes. In this paper we propose a new algorithm for K-medoids clustering which runs like the K-means algorithm. The new algorithm calculates distance matrix once and uses it for finding new medoids at every iterative step. We evaluate the proposed method using real and synthetic data and compare with the results of other algorithms. The proposed algorithm takes reduced time in computation and better performance than others.

  • PDF

Tire Tread Pattern Classification Using Fuzzy Clustering Algorithm (퍼지 클러스터링 알고리즘을 이용한 타이어 접지면 패턴의 분류)

  • 강윤관;정순원;배상욱;김진헌;박귀태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.44-57
    • /
    • 1995
  • In this paper GFI (Generalized Fuzzy Isodata) and FI (Fuzzy Isodata) algorithms are studied and applied to the tire tread pattern classification problem. GFI algorithm which repeatedly grouping the partitioned cluster depending on the fuzzy partition matrix is general form of GI algorithm. In the constructing the binary tree using GFI algorithm cluster validity, namely, whether partitioned cluster is feasible or not is checked and construction of the binary tree is obtained by FDH clustering algorithm. These algorithms show the good performance in selecting the prototypes of each patterns and classifying patterns. Directions of edge in the preprocessed image of tire tread pattern are selected as features of pattern. These features are thought to have useful information which well represents the characteristics of patterns.

  • PDF

Design of Fuzzy Neural Networks Based on Fuzzy Clustering with Uncertainty (불확실성을 고려한 퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계)

  • Park, Keon-Jun;Kim, Yong-Kab;Hoang, Geun-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.173-181
    • /
    • 2017
  • As the industries have developed, a myriad of big data have been produced and the inherent uncertainty in the data has also increased accordingly. In this paper, we propose an interval type-2 fuzzy clustering method to deal with the inherent uncertainty in the data and, using this method, design and optimize the fuzzy neural network. Fuzzy rules using the proposed clustering method are designed and carried out the learning process. Genetic algorithms are used as an optimization method and the model parameters are optimally explored. Experiments were performed with two pattern classification, both of the experiments show the superior pattern recognition results. The proposed network will be able to provide a way to deal with the uncertainty increasing.

EEC-FM: Energy Efficient Clustering based on Firefly and Midpoint Algorithms in Wireless Sensor Network

  • Daniel, Ravuri;Rao, Kuda Nageswara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3683-3703
    • /
    • 2018
  • Wireless sensor networks (WSNs) consist of set of sensor nodes. These sensor nodes are deployed in unattended area which are able to sense, process and transmit data to the base station (BS). One of the primary issues of WSN is energy efficiency. In many existing clustering approaches, initial centroids of cluster heads (CHs) are chosen randomly and they form unbalanced clusters, results more energy consumption. In this paper, an energy efficient clustering protocol to prevent unbalanced clusters based on firefly and midpoint algorithms called EEC-FM has been proposed, where midpoint algorithm is used for initial centroid of CHs selection and firefly is used for cluster formation. Using residual energy and Euclidean distance as the parameters for appropriate cluster formation of the proposed approach produces balanced clusters to eventually balance the load of CHs and improve the network lifetime. Simulation result shows that the proposed method outperforms LEACH-B, BPK-means, Park's approach, Mk-means, and EECPK-means with respect to balancing of clusters, energy efficiency and network lifetime parameters. Simulation result also demonstrate that the proposed approach, EEC-FM protocol is 45% better than LEACH-B, 17.8% better than BPK-means protocol, 12.5% better than Park's approach, 9.1% better than Mk-means, and 5.8% better than EECPK-means protocol with respect to the parameter half energy consumption (HEC).

An Improved Cat Swarm Optimization Algorithm Based on Opposition-Based Learning and Cauchy Operator for Clustering

  • Kumar, Yugal;Sahoo, Gadadhar
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1000-1013
    • /
    • 2017
  • Clustering is a NP-hard problem that is used to find the relationship between patterns in a given set of patterns. It is an unsupervised technique that is applied to obtain the optimal cluster centers, especially in partitioned based clustering algorithms. On the other hand, cat swarm optimization (CSO) is a new meta-heuristic algorithm that has been applied to solve various optimization problems and it provides better results in comparison to other similar types of algorithms. However, this algorithm suffers from diversity and local optima problems. To overcome these problems, we are proposing an improved version of the CSO algorithm by using opposition-based learning and the Cauchy mutation operator. We applied the opposition-based learning method to enhance the diversity of the CSO algorithm and we used the Cauchy mutation operator to prevent the CSO algorithm from trapping in local optima. The performance of our proposed algorithm was tested with several artificial and real datasets and compared with existing methods like K-means, particle swarm optimization, and CSO. The experimental results show the applicability of our proposed method.

Selection of Cluster Topic Words in Hierarchical Clustering using K-Means Algorithm

  • Lee Shin Won;Yi Sang Seon;An Dong Un;Chung Sung Jong
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.885-889
    • /
    • 2004
  • Fast and high-quality document clustering algorithms play an important role in providing data exploration by organizing large amounts of information into a small number of meaningful clusters. Hierarchical clustering improves the performance of retrieval and makes that users can understand easily. For outperforming of clustering, we implemented hierarchical structure with variety and readability, by careful selection of cluster topic words and deciding the number of clusters dynamically. It is important to select topic words because hierarchical clustering structure is summarizes result of searching. We made choice of noun word as a cluster topic word. The quality of topic words is increased $33\%$ as follows. As the topic word of each cluster, the only noun word is extracted for the top-level cluster and the used topic words for the children clusters were not reused.

  • PDF

Data Clustering Using Hybrid Neural Network

  • Guan, Donghai;Gavrilov, Andrey;Yuan, Weiwei;Lee, Sung-Young;Lee, Young-Koo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.457-458
    • /
    • 2007
  • Clustering plays an indispensable role for data analysis. Many clustering algorithms have been developed. However, most of them suffer poor performance of learning. To archive good clustering performance, we develop a hybrid neural network model. It is the combination of Multi-Layer Perceptron (MLP) and Adaptive Resonance Theory 2 (ART2). It inherits two distinct advantages of stability and plasticity from ART2. Meanwhile, by combining the merits of MLP, it improves the performance for clustering. Experiment results show that our model can be used for clustering with promising performance.

  • PDF

Improvement of Support Vector Clustering using Evolutionary Programming and Bootstrap

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.196-201
    • /
    • 2008
  • Statistical learning theory has three analytical tools which are support vector machine, support vector regression, and support vector clustering for classification, regression, and clustering respectively. In general, their performances are good because they are constructed by convex optimization. But, there are some problems in the methods. One of the problems is the subjective determination of the parameters for kernel function and regularization by the arts of researchers. Also, the results of the learning machines are depended on the selected parameters. In this paper, we propose an efficient method for objective determination of the parameters of support vector clustering which is the clustering method of statistical learning theory. Using evolutionary algorithm and bootstrap method, we select the parameters of kernel function and regularization constant objectively. To verify improved performances of proposed research, we compare our method with established learning algorithms using the data sets form ucr machine learning repository and synthetic data.