• Title/Summary/Keyword: cluster tree WSN

Search Result 14, Processing Time 0.018 seconds

DDCP: The Dynamic Differential Clustering Protocol Considering Mobile Sinks for WSNs

  • Hyungbae Park;Joongjin Kook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1728-1742
    • /
    • 2023
  • In this paper, we extended a hierarchical clustering technique, which is the most researched in the sensor network field, and studied a dynamic differential clustering technique to minimize energy consumption and ensure equal lifespan of all sensor nodes while considering the mobility of sinks. In a sensor network environment with mobile sinks, clusters close to the sinks tend to consume more forwarding energy. Therefore, clustering that considers forwarding energy consumption is desired. Since all clusters form a hierarchical tree, the number of levels of the tree must be considered based on the size of the cluster so that the cluster size is not growing abnormally, and the energy consumption is not concentrated within specific clusters. To verify that the proposed DDC protocol satisfies these requirements, a simulation using Matlab was performed. The FND (First Node Dead), LND (Last Node Dead), and residual energy characteristics of the proposed DDC protocol were compared with the popular clustering protocols such as LEACH and EEUC. As a result, it was shown that FND appears the latest and the point at which the dead node count increases is delayed in the DDC protocol. The proposed DDC protocol presents 66.3% improvement in FND and 13.8% improvement in LND compared to LEACH protocol. Furthermore, FND improved 79.9%, but LND declined 33.2% when compared to the EEUC. This verifies that the proposed DDC protocol can last for longer time with more number of surviving nodes.

A Cluster Based Energy Efficient Tree Routing Protocol in Wireless Sensor Networks (광역 WSN 을 위한 클러스팅 트리 라우팅 프로토콜)

  • Nurhayati, Nurhayati;Choi, Sung-Hee;Lee, Kyung-Oh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.576-579
    • /
    • 2011
  • Wireless sensor network are widely all over different fields. Because of its distinguished characteristics, we must take account of the factor of energy consumed when designing routing protocol. Wireless sensor networks consist of small battery powered devices with limited energy resources. Once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, energy efficiency is a key design issue that needs to be enhanced in order to improve the life span of the network. In BCDCP, all sensors sends data from the CH (Cluster Head) and then to the BS (Base Station). BCDCP works well in a smallscale network however is not preferred in a large scale network since it uses much energy for long distance wireless communication. TBRP can be used for large scale network, but it weakness lies on the fact that the nodedry out of energy easily since it uses multi-hops transmission data to the Base Station. Here, we proposed a routing protocol. A Cluster Based Energy Efficient Tree Routing Protocol (CETRP) in Wireless Sensor Networks (WSNs) to prolong network life time through the balanced energy consumption. CETRP selects Cluster Head of cluster tree shape and uses maximum two hops data transmission to the Cluster Head in every level. We show CETRP outperforms BCDCP and TBRP with several experiments.

Hierarchical Routing Algorithm for Improving Survivability of WSAN

  • Cho, Ji-Yong;Choi, Seung-Kwon;Cho, Yong-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.2
    • /
    • pp.51-60
    • /
    • 2016
  • This paper proposes a hierarchical routing algorithm for enhancing survivability of sensor nodes on WSAN. Proposed algorithm has two important parts. The first is a clustering algorithm that uses distance between sensor and actor, and remaining energy of sensor nodes for selecting cluster head. It will induce uniform energy consumption, and this has a beneficial effect on network lifetime. The second is an enhanced routing algorithm that uses the shortest path tree. The energy efficient routing is very important in WSAN which has energy limitation. As a result, proposed algorithm extends network and nodes lifetime through consuming energy efficiently. Simulation results show that the proposed clustering algorithm outperforms conventional routing algorithms such as VDSPT in terms of node and network life time, delay, fairness, and data transmission ratio to BS.

Enhancing the Quality of Service by GBSO Splay Tree Routing Framework in Wireless Sensor Network

  • Majidha Fathima K. M.;M. Suganthi;N. Santhiyakumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2188-2208
    • /
    • 2023
  • Quality of Service (QoS) is a critical feature of Wireless Sensor Networks (WSNs) with routing algorithms. Data packets are moved between cluster heads with QoS using a number of energy-efficient routing techniques. However, sustaining high scalability while increasing the life of a WSN's networks scenario remains a challenging task. Thus, this research aims to develop an energy-balancing component that ensures equal energy consumption for all network sensors while offering flexible routing without congestion, even at peak hours. This research work proposes a Gravitational Blackhole Search Optimised splay tree routing framework. Based on the splay tree topology, the routing procedure is carried out by the suggested method using three distinct steps. Initially, the proposed GBSO decides the optimal route at initiation phases by choosing the root node with optimum energy in the splay tree. In the selection stage, the steps for energy update and trust update are completed by evaluating a novel reliance function utilising the Parent Reliance (PR) and Grand Parent Reliance (GPR). Finally, in the routing phase, using the fitness measure and the minimal distance, the GBSO algorithm determines the best route for data broadcast. The model results demonstrated the efficacy of the suggested technique with 99.52% packet delivery ratio, a minimum delay of 0.19 s, and a network lifetime of 1750 rounds with 200 nodes. Also, the comparative analysis ensured that the suggested algorithm surpasses the effectiveness of the existing algorithm in all aspects and guaranteed end-to-end delivery of packets.