• 제목/요약/키워드: cluster evolution

검색결과 312건 처리시간 0.024초

Spin evolution of Horizon-AGN early-type galaxies

  • Choi, Hoseung;Yi, Sukyoung K.;Dubois, Yohan;Kimm, Taysun;Devriendt, Julien. E.G.;Pichon, Christophe
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.33.1-33.1
    • /
    • 2018
  • The differential rotational properties of early-type galaxies (ETGs) revealed by integral field spectroscopy surveys is arguably one of the most exciting findings in the galaxy evolution study during the past decade. Numerical studies have shown that galaxy mergers under various configurations can reproduce the observed distribution of ETG spin. However, we suggest an alternative scenario for the spin evolution of a large fraction of ETGs. Using the Horizon-AGN simulation, we follow the spin evolution of 10037 color-selected ETGs more massive than 1010 Msun that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals(5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, fSR, and the mean spin of massive ETGs. Although the environmental dependence is not clear in the fSR, it is visible in the mean value of the spin parameter. The environmental dependence is driven by the satellite ETGs whose spin gradually decreases as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of central ETGs of halos with Mvir > 1012.5 Msun, but only 22% of satellite and field ETGs. We find that non-merger induced tidal perturbations better correlate with the galaxy spin-down in satellite ETGs than mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local (z < 1) universe.

  • PDF

On the Formation of Red-sequence Galaxies in Rich Abell Clusters at z ${\lesssim}$ 0.1

  • 신윤경
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.36.2-36.2
    • /
    • 2012
  • The aim of this study was to explore the role of galaxy mergers on the formation and evolution of galaxies in galaxy clusters. For this purpose, u', g', r' deep optical imaging and multi-object spectroscopic observation were done for four rich Abell clusters at z ${\lesssim}$ 0.1 (A119, A2670, A3330, and A389) with a MOSAIC 2 CCD and Hydra spectrograph mounted on a Blanco 4-m telescope at CTIO. With the deep images, we found that about 25% of the bright red-sequence galaxies exhibited post-merger signatures in a cluster environment. This fraction was much higher than what was expected from the results of the field environment (-35%, van Dokkum 2005) and significantly low on-going merger fractions (about one-fifth of the field) appeared in the clusters currently. Taking advantage of the most up-to-date semi-analytic model, the results indicate that most of the post-merger galaxies may have carried over their merger features from their previous halo environment. All the brightest cluster galaxies in our cluster samples revealed faint structures in their halos as well as multiple nuclei in their centers seen in the deep optical images. We suggest that the mass of the BCGs increased mainly though major mergers at recent epochs based on their post-merger signatures and the large gaps in the total magnitudes between the BCGs and the second-rank BCGs. A UV bright tidal tail and tidal dwarf galaxy (TDG) candidates around the post-merger galaxy, NGC 4922, were discovered in the outskirts of the Coma cluster using the GALEX UV data. We did two-component stellar population modeling for the TDG candidates and the results indicate that they are an early form of dwarf galaxies frequently found around massive early-type galaxies in clusters. In conclusion, we suggest that the mergers of galaxies are an important driving force behind galaxy formation and evolution in cluster environments even until recent epochs.

  • PDF

Globular clusters with multiple red giant branches as remaining nuclei of primeval dwarf galaxies

  • Lee, Young-Wook;Han, Sang-Il;Joo, Seok-Joo;Lim, Dongwook;Jang, Sohee;Na, Chongsam;Roh, Dong-Goo
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.73.2-73.2
    • /
    • 2013
  • In the current ${\Lambda}CDM$ hierarchical merging paradigm, a galaxy like the Milky Way formed by numerous mergers of ancient subsystems. Most of the relics of these building blocks, however, are yet to be discovered or identified. Recent progress in the Milky Way globular cluster research is throwing new light on this perspective. The discoveries of multiple stellar populations having different heavy element abundances in some massive globular clusters are suggesting that they are most likely the remaining cores or relics of disrupted dwarf galaxies. In this talk, we will report our progress in the (1) narrow-band photometry, (2) low-resolution spectroscopy, and (3) population modeling for this growing group of peculiar globular clusters.

  • PDF

PHOTOMETRIC EVOLUTION OF OPEN CLUSTERS AND ASSOCIATIONS

  • LEE SEE-WOO;PARK WON-KEE
    • 천문학회지
    • /
    • 제26권1호
    • /
    • pp.47-64
    • /
    • 1993
  • The photometric evolution of cluster stars are examined for six synthetic clusters in the age range from $2.4\times10^6\;yr\;to\;7.6\times10^8yr$ by using the detailed evolutionary model calculation, and their results are compared with the observed integrated absolute magnitude and colors of 47 clusters. The reasonable agreements of the observed photometric parameters with the synthetic evolutionary sequences imply that there is a general form of time-dependent IMF including the noncoeval formation of stars and its detailed function is changed slightly with various environmental conditions of each primordial cloud.

  • PDF

GALAXY EVOLUTION IN DISTANT UNIVERSE

  • IM MVUNGSHIN
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.135-140
    • /
    • 2005
  • This paper summarizes the recent progress made by our group at Seoul National University on studies of the evolution and formation of distant galaxies. Various research projects are currently underway, which include: (i) the number density of distant early-type galaxies (z < 1); (ii) the optical-NIR color gradient of nearby early-type galaxies; (iii) J - K-selected Extremely Red Objects (EROs) in field (CDF-S) and the cluster environment; and (iv) the Lyman-break galaxies in the Spitzer First Look Survey (FLS) field. These works will constrain the mass evolution and the star formation history of galaxies in different environments, and the results will serve as useful contraints on galaxy formation models.

THE DYNAMICAL EVOLUTION OF GLOBULAR CLUSTERS WITH STELLAR MASS LOSS

  • Kim, Chang-Hwan;Chun, Mun-Suk;Min, Kyung-W.
    • Journal of Astronomy and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.11-23
    • /
    • 1991
  • The dynamical evolution of globular clusters is studied using the orbit-averaged multicomponent Fokker-Planck equation. The original code developed by Cohn(1980) is modi-fied to include the effect of stellar evolutions. Plommer's model is chosen as the initial density distribution with the initial mass function index $\alpha$=0.25, 0.65, 1.35, 2.35, and 3.35. The mass loss rate adopted in this work follows that of Fusi-Pecci and Renzini(1976). The stellar mass loss acts as the energy source, and thus affects the dynamical evolution of globular clusters by slowing down the evolution rate and extending the core collapse time Tcc. And the dynamical length scale $$R_c, $$R_h is also extended. This represents the expansion of cluster due to the stellar mass loss.

  • PDF

On the evolution of the galaxy morphology in the hierarchical universe

  • Lee, Jae-Hyun;Yi, Suk-Young
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • We have investigated the evolution of the galaxy morphology in the hierarchical universe taking advantage of Semi-Analytic Model (SAM). It is well known that the galaxy morphology is related to the dynamical and the chemical evolution. This implies that we need to understand overall physical processes in the galaxy to reproduce its morphology. Thus we implemented gradual hot gas stripping of satellite galaxies in a galaxy cluster and recycling of stellar mass losses into our model in order to describe star formation rate of galaxies accurately. To morphologically classify galaxies, the evolution of disc and bulge components is traced carefully. We compute our models based on the dark matter halo merger trees generated by N-body simulations as well as the Extended Press-Schechter (EPS) formalism. We present morphological differences caused by the use of different merger trees.

  • PDF