• 제목/요약/키워드: clouds-ISM

Search Result 71, Processing Time 0.023 seconds

THE PROPERTIES OF DUST EMISSION IN THE GALACTIC CENTER REGION REVEALED BY FIS-FTS OBSERVATIONS

  • Yasuda, A.;Kaneda, H.;Takahashi, A.;Nakagawa, T.;Kawada, M.;Okada, Y.;Takahashi, H.;Murakami, N.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.221-222
    • /
    • 2012
  • We present the results of far-infrared spectral mapping of the Galactic center region with FIS-FTS, which covered the two massive star-forming clusters, Arches and Quintuplet. We find that two dust components with temperatures of about 20 K and 50 K are required to fit the overall continuum spectra. The warm dust emission is spatially correlated with the [OIII] $88{\mu}m$ emission and both are likely to be associated with the two clusters, while the cool dust emission is more widely distributed without any clear spatial correlation with the clusters. We find differences in the properties of the ISM around the two clusters, suggesting that the star-forming activity of the Arches cluster is at an earlier stage than that of the Quintuplet cluster.

CO J=2-1 LINE OBSERVATIONS TOWARD THE SUPERNOVA REMNANT G54.1+0.3

  • Lee, Jung-Won;Koo, Bon-Chul;Lee, Jeong-Eun
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.5
    • /
    • pp.117-125
    • /
    • 2012
  • We present $^{12}CO$ J = 2-1 line observations of G54.1+0.3, a composite supernova remnant with a mid-infrared (MIR) loop surrounding the central pulsar wind nebula (PWN). We map an area of $12^{\prime}{\times}9^{\prime}$ around the PWN and its associated MIR loop. We confirm two velocity components that have been proposed to be possibly interacting with the PWN/MIR-loop; the +53 km $s^{-1}$ cloud, which appears in contact with the eastern boundary of the PWN and the +23 km $s^{-1}$ cloud, which has CO emission coincident with the MIR loop. However, we have not found a direct evidence for the interaction in either of these clouds. Instead, we detected an 5'-long arc-like cloud at +15-+23 km $s^{-1}$ with a systematic velocity gradient of ~3 km $s^{-1}$ $arcmin^{-1}$ and broad-line emitting CO gas with widths (FWHM) of ${\leq}7km\;s^{-1}$ in the western interior of the supernova remnant. We discuss their association with the supernova remnant.

TURBULENCE IN THE OUTSKIRTS OF THE MILKY WAY

  • Sanchez-Salcedo, F.J.;Santillan, A.;Franco, Jose
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.171-177
    • /
    • 2007
  • In external galaxies, the velocity dispersion of the atomic hydrogen gas shows a remarkably flat distribution with the galactocentric radius. This has been a long-standing puzzle because if the gas velocity dispersion is due to turbulence caused by supernova explosions, it should decline with radius. After a discussion on the role of spiral arms and ram pressure in driving interstellar turbulence in the outer parts of galactic disks, we argue that the constant bombardment by tiny high-velocity halo clouds can be a significant source of random motions in the outer disk gas. Recent observations of the flaring of H I in the Galaxy are difficult to explain if the dark halo is nearly spherical as the survival of the streams of tidal debris of Sagittarius dwarf spheroidal galaxy suggests. The radial enhancement of the gas velocity dispersion (at R > 25 kpc) due to accretion of cloudy gas might naturally explain the observed flaring in the Milky Way. Other motivations and implications of this scenario have been highlighted.

MOLECULAR LINE OBSERVATION TOWARD POLARIS FLARE

  • Chi Seung-Youp;Park Yong-Sun
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • In an attempt to investigate star formation activity and statistical properties of clumps of high Galactic latitude clouds (HLCs), we mapped the Polaris Flare region, PF121.3+25.5, in $^{12}CO\;and\;^{13}CO$ J = 1 - 0 using SRAO 6-m telescope and also observed its 12 $^{13}CO$ peak positions in CS J = 2 - 1 with TRAO 14-m telescope. $^{13}CO$ integrated intensity map shows clearly its clumpy structure and the locations of clumps well agree with $^{12}CO$morphology. CS line is not detected toward the 12 $^{13}CO$ peak positions, so we can conclude there are no dense $(\sim10^4\;cm^{-3})$ in this region. We decomposed 105 clumps from $^{13}CO$ map using GAUSSCLUMPS algorithm. The mass of clumps ranges from $7.8\;M_{\odot}\;to\;7.4{\times}10^{-2}\;M_{\odot}$ with a total mass of $66.4\;M_{\odot}$ The mass spectrum follows a power law, dN/dM ${\propto}\;M^{-\alpha}$ with a power index of ${\alpha}=1.91{\pm}0.13$. The virial masses of clumps are in the range of $10{\sim}100M_{LTE}$ and so these clumps are considered to be gravitationally unbound.

AN UPDATE ON THE MOPRA SOUTHERN GALACTIC PLANE CO SURVEY

  • BRAIDING, CATHERINE;BURTON, MICHAEL G.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.103-105
    • /
    • 2015
  • The 22 m diameter Mopra telescope in Australia is being used to undertake an improved survey of the CO J = 1-0 line at 3mm along the 4th quadrant of the Galaxy, achieving an order of magnitude better spatial and spectral resolution (i.e. 0.6 and 0.1 km/s) than the Dame et al. (2001) survey that is publically available for the Southern Galactic plane. Furthermore, the Mopra CO survey includes the four principal isotopologues of the CO molecule (i.e. $^{12}CO$, $^{13}CO$, $C^{18}O$ and $C^{17}O$). The survey makes use of an 8 GHz-wide spectrometer and a fast mode of on-the-fly mapping developed for the Mopra telescope, where the cycle time has been reduced to just 1/4 of a second. 38 square degrees of the Galaxy, from $l=306-344^{\circ}$, $b=0{\pm}5^{\circ}$ have currently been surveyed, together with additional 9 sq. deg. regions around the Carina complex and the Central Molecular Zone. We present new results from the survey (see also Burton et al., 2013, 2014). The Mopra CO data are being made publically available as they are published; for the latest release see the project website at www.phys.unsw.edu.au/mopraco.

NEAR-INFRARED HIGH-RESOLUTION SPECTROSCOPY OF THE OBSCURED AGN IRAS 01250+2832

  • Shirahata, M.;Usuda, T.;Oyabu, S.;Nakagawa, T.;Yamamura, I.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.295-296
    • /
    • 2012
  • We provide a new physical insight on the hot molecular clouds near the nucleus of the heavily obscured AGN IRAS 01250+2832, based on the results of near-infrared high-resolution spectroscopy of gaseous CO ro-vibrational absorption lines with Subaru/IRCS. The detected CO absorption lines up to highly excited rotational levels reveal that hot dense molecular clouds exist around the AGN under the peculiar physical conditions.

DENSITY AND VELOCITY PROFILES IN COLLAPSING CLOUD L694-2

  • Seo, Y.M.;Hong, S.S.;Lee, S.H.;Park, Y.S.;Kim, Jong-Soo
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.119-122
    • /
    • 2007
  • From the HCN observations of dense molecular cloud L694-2, Lee et al.(2007) determined internal distributions of density and velocity for the cloud. The density profile collaborates roughly with the Bonnor- Ebert gas sphere, but the velocity field departs significantly from the result of numerical simulations that are started from the BE sphere. Taking L694-2 as an example of collapsing clouds, we have performed a series of collapse simulations and determined initial configurations for the cloud in such a way that the resulting density and velocity profiles both match with the empirically deduced ones. Among many trial configurations the cloud which is initially uniform in density and bound by an expanding envelop depicts most closely the empirically obtained profiles of both density and velocity.

MODEL CALCULATIONS OF THE UV - EXCITED MOLECULAR HYDROGEN IN INTERSTELLAR CLOUDS

  • Lee, Dae-Hee;Pak, Soo-Jong;Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.7-10
    • /
    • 2005
  • We have calculated 2448 interstellar cloud models to investigate the formation and destruction of high rotational level $H_2$ according to the combinations of five physical conditions: the input UV intensity, the $H_2$ column density, cloud temperature, total density, and the $H_2$ formation rate efficiency. The models include the populations of all the accessible states of $H_2$ with the rotational quantum number J < 16 as a function of depth through the model clouds, and assume that the abundance of $H_2$ is in a steady state governed primarily by the rate of formation on the grain surfaces and the rates of destruction by spontaneous fluorescent dissociation following absorption in the Lyman and Werner band systems. The high rotational levels J = 4 and J = 5 are both populated by direct formation into these levels of newly created molecules, and by pumping from J = 0 and J = 1, respectively The model results show that the high rotational level ratio N(4)/N(0) is proportional to the incident UV intensity, and is inversely proportional to the $H_2$ molecular fraction, as predicted in theory.

THE FRACTAL DIMENSION OF THE 𝜌 OPHIUCUS MOLECULAR CLOUD COMPLEX

  • Lee, Yongung;Li, Di;Kim, Y.S.;Jung, J.H.;Kang, H.W.;Lee, C.H.;Yim, I.S.;Kim, H.G.
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.255-259
    • /
    • 2016
  • We estimate the fractal dimension of the ${\rho}$ Ophiuchus Molecular Cloud Complex, associated with star forming regions. We selected a cube (${\upsilon}$, l, b) database, obtained with J = 1-0 transition lines of $^{12}CO$ and $^{13}CO$ at a resolution of 22" using a multibeam receiver system on the 14-m telescope of the Five College Radio Astronomy Observatory. Using a code developed within IRAF, we identified slice-clouds with two threshold temperatures to estimate the fractal dimension. With threshold temperatures of 2.25 K ($3{\sigma}$) and 3.75 K ($5{\sigma}$), the fractal dimension of the target cloud is estimated to be D = 1.52-1.54, where $P{\propto}A^{D/2}$, which is larger than previous results. We suggest that the sampling rate (spatial resolution) of observed data must be an important parameter when estimating the fractal dimension, and that narrower or wider dispersion around an arbitrary fit line and the intercepts at NP = 100 should be checked whether they relate to firms noise level or characteristic structure of the target cloud. This issue could be investigated by analysing several high resolution databases with different quality (low or moderate sensitivity).

ORFEUS OBSERVATIONS OF ULTRAVIOLET EXCITED HIGH-J MOLECULAR HYDROGEN

  • Lee, Dae-Hee;Dixon, W. Van Dyke;Min, Kyoung-Wook;Pak, Soo-Jong
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.6
    • /
    • pp.145-153
    • /
    • 2009
  • We present measurements of diffuse interstellar $H_2$ absorption lines in the continuum spectra of 10 early-type stars. The data were observed with the Berkeley Extreme and Far-Ultraviolet Spectrometer (BEFS) of the ORFEUS telescope on board the ORFEUS-SPAS I and II space-shuttle missions in 1993 and 1996, respectively. The spectra extend from the interstellar cutoff at 912 $\AA$ to about 1200 $\AA$ with a resolution of ~ 3000 and statistical signal-to-noise ratios between 10 and 65. Adopting Doppler broadening velocities from high-resolution optical observations, we obtain the $H_2$ column densities of rotational levels J" = 0 through 5 for each line of sight. The kinetic temperatures derived from J" = 0 and 1 states show a small variation around the mean value of 80 K, except for the component toward HD 219188, which has a temperature of 211 K. Based on a synthetic interstellar cloud model described in our previous work, we derive the incident UV intensity IUV and the hydrogen density $n_H$ of the observed components to be -0.4 $\leq$ log $I_{UV}\leq2.2$ and $6.3{\leq}n_H2500cm^{-3}$, respectively.