• Title/Summary/Keyword: cloud-backed file system

Search Result 2, Processing Time 0.015 seconds

Performance Analysis of Cloud-Backed File Systems with Various Object Sizes (클라우드 기반 파일 시스템의 오브젝트 크기별 성능 분석)

  • Kim, Jiwon;Lee, Kyungjun;Ryu, Sungtae;Han, wansoo
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.744-750
    • /
    • 2016
  • Recent cloud infrastructures provide competitive performances and operation costs for many internet services through pay-per-use model. Particularly, object storages are highlighted, as they have unlimited file holding capacity and allow users to access the stored files anytime and anywhere. Several lines of research are based on cloud-backed file systems, which support traditional POSIX interface rather than RESTful APIs via HTTP. However, these existing file systems handle all files with uniform size backing objects. Consequently, the accesses to cloud object storages are likely to be inefficient. In our research, files are profiled according to characteristics, and appropriate backing unit sizes are determined. We experimentally verify that different backing unit sizes for the object storage improve the performance of cloud-backed file systems. In our comparative experiments with S3QL, our prototype cloud-backed file system shows faster performance by 18.6% on average.

In-Memory File System Backed by Cloud Storage Services as Permanent Storages (클라우드 스토리지를 최종 저장 장치로 사용하는 인메모리 파일 시스템)

  • Lee, Kyungjun;Kim, Jiwon;Ryu, Sungtae;Han, Hwansoo
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.841-847
    • /
    • 2016
  • As network technology advances, a larger number of devices are connected through the Internet. Recently, cloud storage services are gaining popularity, as they are convenient to access anytime and anywhere. Among cloud storage services, object storage is the representative one due to their characteristics of low cost, high availability, and high durability. One limitation of object storage services is that they can access data on the cloud only through the HTTP-based RESTful APIs. In our work, we resolve this limitation with the in-memory file system which provides a POSIX interface to the file system users and communicates with cloud object storages with RESTful APIs. In particular, our flush mechanism is compatible with existing file systems, as it is based on the swap mechanism of the Linux kernel. Our in-memory file system backed by cloud storage reduces the performance overheads and shows a better performance than S3QL by 57% in write operations. It also shows a comparable performance to tmpfs in read operations.