• Title/Summary/Keyword: cloud water

Search Result 278, Processing Time 0.026 seconds

A study of Computer Textile Pattern design Development with Korean Embroidery Techniques - Using The Ten Longevity Symbols Embroidery of Chosun Period - (자수 기법을 응용한 컴퓨터 텍스타일 문양 디자인 연구 - 조선시대 십장생 자수 문양을 중심으로 -)

  • Park, Suh-Rin
    • Journal of the Korean Society of Fashion and Beauty
    • /
    • v.6 no.1
    • /
    • pp.39-47
    • /
    • 2008
  • Korean embroidery is the long historical industrial arts of real life and has handed down Korean sentiment up to now. Korean traditional embroidered pattern is designed to wish someone's health and luck, who uses the embroidery on the clothes and the goods in real life. Especially, the ten longevity symbols' design is represented as 10 which means perfection in oriental philosophy, the sun, mountain, cloud, water, crane, rock, turtle, pine tree, the elixir of life and deer; these 10 symbols show how ancient Korean believe and wish perpetual youth. However, fiber material used embroidery relic has difficulty in preserving for long period compared to other relic descended from historical events for long time and their preserved state isn't so good owing to have been used directly in the real life. Therefore, it is essentially embossed to preserve the embroidery relic and pattern, and make DB for the data. With preservation of the pictures about the handicraft, it's necessary to preserve embroidery technique and make DB through digital imagination. Through the process, we can apply Korean embroidery image to cul-duct package and digital image related field, and it will be helpful to make the tradition popular. In this study, through the research for the embroidery technique applied pattern on the embroidery relic of ten longevity symbols, we'll establish the cultural identification of Korean embroidery image and then develop a worldwide Korean image.

  • PDF

Development of Pre-Processing and Bias Correction Modules for AMSU-A Satellite Data in the KIAPS Observation Processing System (KIAPS 관측자료 처리시스템에서의 AMSU-A 위성자료 초기 전처리와 편향보정 모듈 개발)

  • Lee, Sihye;Kim, Ju-Hye;Kang, Jeon-Ho;Chun, Hyoung-Wook
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.453-470
    • /
    • 2013
  • As a part of the KIAPS Observation Processing System (KOPS), we have developed the modules of satellite radiance data pre-processing and quality control, which include observation operators to interpolate model state variables into radiances in observation space. AMSU-A (Advanced Microwave Sounding Unit-A) level-1d radiance data have been extracted using the BUFR (Binary Universal Form for the Representation of meteorological data) decoder and a first guess has been calculated with RTTOV (Radiative Transfer for TIROS Operational Vertical Sounder) version 10.2. For initial quality checks, the pixels contaminated by large amounts of cloud liquid water, heavy precipitation, and sea ice have been removed. Channels for assimilation, rejection, or monitoring have been respectively selected for different surface types since the errors from the skin temperature are caused by inaccurate surface emissivity. Correcting the bias caused by errors in the instruments and radiative transfer model is crucial in radiance data pre-processing. We have developed bias correction modules in two steps based on 30-day innovation statistics (observed radiance minus background; O-B). The scan bias correction has been calculated individually for each channel, satellite, and scan position. Then a multiple linear regression of the scan-bias-corrected innovations with several predictors has been employed to correct the airmass bias.

The Vertical Distribution of Radiative Flux and Heating Rate at King Sejong Station in West Antarctica (남극 세종기지에서 복사 속 및 복사 가열률의 연직 분포)

  • Lee, Kyu-Tae;Lee, Bang-Yong;Lee, Won-Hak;Jee, Joon-Bum;Lee, Min-Kyung
    • Ocean and Polar Research
    • /
    • v.27 no.1
    • /
    • pp.87-95
    • /
    • 2005
  • The vertical profiles of radiative flux and heating rate at King Sejong Station in West Antarctica were calculated with radiative transfe model by Chou and Suarez (1999) and Chou et al (2001). To run this model, the profiles of temperature, mixing ratios of water vapor and ozone at King Sejng Station were derived from ECMWF Reanalysis data. The surface temperature and albedo were also derived from NCEP/NCAR Reanalysis and CERES data. The radiative flux strongly depends on the cloud optical path length that was calculated using the measured W-h data and model by Chou and Lee(1996). Durins the period of $2000{\sim}2001$ (12 and 18 UTC), the correlation coefficient between calculated and measured downward solar fluxes at surface was 0.90 and the coefficient for downward longwave flux was 0.61. The calculated net heating rates of surface layer decreased during the same period, the trend of which was in accordance with the decrease of measured temperature.

An Estimation of the Algal Production of Sargassum confusum (Phaeophyta) on the Coast of Ohori, East Sea, Korea, by Mathematical Models Based on Photosynthetic Rates and Biomass Changes (광합성율과 생물량에 기초한 Sargassum confusum의 생산성 계산 모델)

  • KOH, CHUL-HWAN;JOH, SUNG-OK
    • 한국해양학회지
    • /
    • v.26 no.2
    • /
    • pp.108-116
    • /
    • 1991
  • A production model was constructed by combining the production rate and biomass of Sargassum confusum measured at monthly intervals on the coast of Ohori, Korea, to estimate the algal production for a given period. The production for a certain period, e.g., for a year (P/SUB yr/), was calculated from the equation: P/SUB yr/ = .int.P/SUB t/$.$B/SUB t/dt, where pl and Bl are the production rate and biomass at time t. P/SUB l/ was considered as a function of temperature and light. Photosynthesis-Irradiance curves obtained from the in situ experiments were applied for P/SUB l/ Temperature and light intensity can be expressed as periodic functions of time (T, L=f(t)). Diurnal values of water temperature and light intensity at 3 m depth where S. confusum mainly found were substituted into the equation of P/SUB l/. Simulations using our models show that temperature was one of the most sensitive factors operating on the primary production. Thirty percent decrease of light intensity by cloud cover was estimated to decrease the annual production by 5%.

  • PDF

Satellite Rainfall Monitoring: Recent Progress and Its Potential Applicability (인공위성 강우모니터링: 최근 동향 및 활용 방안)

  • Kim Seong-Joon;Shin Sa-Chul;Suh Ae-Sook
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.2
    • /
    • pp.142-150
    • /
    • 1999
  • During the past three decades after the first attempt to use satellite imagery or derived cloud products for rainfall estimation, much is known and understood concerning the scope and difficulties of satellite rainfall monitoring. After a brief general introduction this paper reviews recent progress in this field with special reference to improvement of algorithms, inter-comparison projects, integrative use of data from different sources, increasing lengths of data records and derived products, and interpretability of rainfall results. Also the paradigm of TRMM (Tropical Rainfall Measuring Mission) which is the first space mission(1997) dedicated to measuring tropical and subtropical rainfall though microwave and visible/infrared sensors, including the first spaceborne rain radar was introduced, and the potential applicability to the field of agriculture and water resources by combining satellite imagery is described.

  • PDF

Feasibility Study for Detecting the Tropopause Folding Turbulence Using COMS Geostationary Satellite (천리안 위성 자료를 이용한 대류권계면 접힘 난류 탐지 가능성 연구)

  • Kim, Mijeong;Kim, Jae Hwan
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.119-131
    • /
    • 2017
  • We present and discuss the Tropopause Folding Turbulence Detection (TFTD) algorithm for the Korean Communication, Ocean, Meteorological Satellite (COMS) which is originally developed for the Tropopause Folding Turbulence Product (TFTP) from the Geostationary Operational Environmental Satellite (GOES)-R. The TFTD algorithm assumes that the tropopause folding is linked to the Clear Air Turbulence (CAT), and thereby the tropopause folding areas are detected from the rapid spatial gradients of the upper tropospheric specific humidity. The Layer Averaged Specific Humidity (LASH) is used to represent the upper tropospheric specific humidity calculated using COMS $6.7{\mu}m$ water vapor channel and ERA-interim reanalysis temperature at 300, 400, and 500 hPa. The comparison of LASH with the numerical model specific humidity shows a strong negative correlation of 80% or more. We apply the single threshold, which is determined from sensitivity analysis, for cloud-clearing to overcome strong gradient of LASH at the edge of clouds. The tropopause break lines are detected from the location of strong LASH-gradient using the Canny edge detection based on the image processing technique. The tropopause folding area is defined by expanding the break lines by 2-degree positive gradient direction. The validations of COMS TFTD is performed with Pilot Reports (PIREPs) filtered out Convective Induced Turbulence (CIT) from Dec 2013 to Nov 2014 over the South Korea. The score test shows 0.49 PODy (Probability of Detection 'Yes') and 0.64 PODn (Probability of Detection 'No'). Low POD results from various kinds of CAT reported from PIREPs and the characteristics of high sensitivity in edge detection algorithm.

Construction and Analysis of Geospatial Information about Submerged District Using Unmanned Aerial System (무인항공시스템에 의한 수몰지역 공간정보 구축 및 분석)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of Digital Convergence
    • /
    • v.14 no.12
    • /
    • pp.225-230
    • /
    • 2016
  • Dam is built to supply water necessary for life stably and reduce the damage caused by heavy rains. Recently there has been required the analysis and utilization of spatial information on the area around the dam because construction of the dam gives a great impact on the environment of the surrounding area. In this study, we build spatial information about the submerged district due to dam construction using drone and propose the effective method for analysis of the spatial information. As a result, orthoimage and DSM of study area were constructed effectively. Change of submerged district of this area was calculated according to the analysis of spatial information. Building and analyzing spatial information carried out in this study are expected to be utilized as the basis in related fields.

IoT based smart reporting and mooring system for vessels (IoT 기반의 선박용 스마트보고 및 계류 시스템)

  • Ahmadhon, Kamolov;Park, Su-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.395-398
    • /
    • 2017
  • The Smart Ship is considered one of the most discussed and novel topics in developing technological period. In this reason, the amount of running researches on it is evolving so fast. As a proof, the faced drawbacks such as the departure of ships, their safety, exchanging data, traffic and data monitoring system are being solved by presenting advanced technologies and innovations like Cloud, BigData, IoT and etc. Expanding the utilization of these technologies in the Marine world emphasizes not only the departure of the ships in the water but also they focus on solving the problems of the ships connected with the communication to the ports. In this paper, we present an IoT based smart reporting and mooring system for vessels and ports. In the proposed system, the ships automatically send all the data about themselves to the port and after getting the data, ports automatically send the information about possible spaces to moor for the ships using the sensors at the port. The intended system gives an amenity to minimize the time, effort and the cost while mooring the vessels.

  • PDF

An Experimental Study of Flow and Dispersion Characteristics in Meandering Channel (사행수로에서의 유속 및 분산특성에 관한 실험적 연구)

  • Park, Sung-Won;Seo, Il-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.799-802
    • /
    • 2008
  • General behaviors based on hydraulic characteristics of natural streams and channels have been recently analyzed and developed via various numerical models. However in the states of natural hydraulics, an experimental research must be performed simultaneously with the mathematical analysis due to effects of hydraulic properties such as meander, sediment, and so on. In this study based on 2-D advection-dispersion equation, flow and tracer experiments were performed in the S-curved meandering laboratory channel with a rectangular cross-section. The channel was equipped with instrument carriages which was equipped with an auto-traversing system to be used with velocity measuring sensors throughout the depth and breadth of the flow field. To measure concentration distribution of the salt solution was adjusted to that of the flume water by adding methanol and a red dye (KMnO4) was added to aid the visualization of the tracer cloud, the tracer was instantaneously injected into the flow as a full-depth vertical line source by the instantaneous injector and the initial concentration of the tracer was 100,000 mg/l. The secondary current as well as the primary flow pattern was analyzed to investigate the flow distribution in the meandering channels. The velocity distribution of the primary flow for all cases skewed toward the inner bank at the first bend, and was almost symmetric at the crossovers, and then shifted toward the inner bank again at the next alternating bend. Thus, one can clearly notice that the maximum velocity occurs taking the shortest course along the channel, irrespective of the flow conditions. The result of the tracer tests shows that pollutant clouds are spreading following the maximum velocity lines in each cases with various mixing patterns like superposition, separation, and stagnation of pollutant clouds. Flow characteristics in each cases performed in this study can be compared with tracer dispersion characteristics with using evaluation of longitudinal and transverse dispersion coefficients(LDC, TDC). As expected, LDC and TDC in meandering parts have been evaluated with increasing distribution and straight parts have effected to evaluate minimum of LDC and TDC due to symmetric flow patterns and attenuations of secondary flow.

  • PDF

The morphological changes of the beach and dune using by periodical measurements (주기적 지형 측량을 통한 해빈과 해안사구의 지형변화: 충남 보령시 소황사구를 사례로)

  • KANG, Dong Kyun;SEO, Jong Cheol
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.69-79
    • /
    • 2012
  • The aim of this study is to analyze the mid-term changes of beach and dune morphology at Sohwang beach, Korea using by Total Station. Measurements executed 4 times during two year. Based on ArcInfo as point cloud obtained through precise measurement data by Total Station, alteration of beach and dune was analyzed at DEM, of which cell size is about 1m. Since these artificial constructions have influenced current systems of this region, the large-scale sand movements above mentioned have occurred around the jetty and the sea-wall. There occurred sedimentation in the north of the Jetty and erosion in the south of the Jetty, which is installed at the central part of object area. The direction of recent topographic development does not coincide with that of wind, and, rather, topographic changes occurred mainly at beaches and dunes due to the transformation of coastal water flow caused by artificial structure nearby. If precise measurement is conducted periodically, and long term monitoring is carried out by installing equipment measuring movement pattern of sediment around artificial structure, cause of topographic change around the object area could be discovered.