• 제목/요약/키워드: clothing ventilation

검색결과 64건 처리시간 0.021초

개구부를 통한 의복의 환기 양상 평가 (Assessment of Clothing Ventilation through Openings)

  • 추미선
    • 복식문화연구
    • /
    • 제8권5호
    • /
    • pp.660-667
    • /
    • 2000
  • Clothing ventilation was investigated using a manikin wearing an impermeable overall under an isothermal condition, in which the ventilation occurred only through the openings. The ventilation volume was estimated by both microenvironment volume and ventilation rate, where, the microenvironment volume was measured by an air subsitution method and the ventilation rate by a trace gas method. Microenvironment volume of the experimental garment was about 21.0 liters. Even though it was certainly affected by the distance from the opening, the ventilation rate was more significantly influenced by the opening area and the shape of air layer in the clothing. The volume of air exchange in the clothing microenvironment was affected greatly by the microenvironment volume and the opening area, and it was different for each part of the body with bigger air exchange volume in the microenvironment of the leg as compared to that of the arm.

  • PDF

Trace gas법에 의한 의복의 환기 양상의 평가 (Assessment of clothing ventilation by a trace gas method)

  • 추미선
    • 한국의류학회지
    • /
    • 제21권8호
    • /
    • pp.1387-1395
    • /
    • 1997
  • Effects of the ambient air temperature and the opening position on the pattern of the clothing ventilation of a thermal manikin wearing an impermeable blouse were investigated by the trace gas method. Under an isothermal condition, the ventilation was governed by diffusion, and the ventilation rate through the wrist-openings was greatly affected by the distance from the openings. Under non-isothermal conditions, however, the ventilation was accelerated by the convection driven by the temperature gradient between the clothing microclimate and the surrounding air; the greater the temperature gradient, the greater the ventilation. Even though it was certainly affected by the ambient air temperature, the ventilation rate was more significantly influenced by the position of openings. The ventilation patterns at the arm and the body were distinctive.

  • PDF

환경 온도가 개구부를 통한 의복의 환기 양상에 미치는 영향 (Effect of Ambient Air Temperature on the Pattern of Clothing Ventilation through Openings)

  • 추미선
    • 복식문화연구
    • /
    • 제10권6호
    • /
    • pp.793-801
    • /
    • 2002
  • The effects of ambient air temperature on the clothing ventilation were investigated numerically by a finite difference method. Numerical analysis using a 2-dimensional model comprising the air space between the skin and the clothing was conducted under the assumption that the clothing ventilation occurred only through the openings not through the fabric. The larger the temperature difference between the skin and the surroundings, the more apparent the thermal boundary layer As the ambient air temperature decreased, the air flow and the rate of the return of oxygen concentration to the atmosphere level in the clothing increased. Convection was dominant under low ambient air temperature, whereas conduction was dominant under high ambient air temperature. The ventilation rate was faster in the clothing microenvironment of the body part than that of the arm part.

  • PDF

스포츠웨어의 슬릿 벤틸레이션 시스템이 인체 생리반응에 미치는 효과 (Effect of Slit Ventilation System in Sportswear on Physiological Responses)

  • 연수민;김희은
    • 한국의류산업학회지
    • /
    • 제7권1호
    • /
    • pp.75-80
    • /
    • 2005
  • The purpose of this study was to investigate the effects of silt ventilation system on physiological responses. We measured rectal temperature, local skin temperature, clothing microclimate, blood pressure, heart rate, energy metabolism, body weight loss and subjective sensation during 70 minute, 50 min exercise period and 20 min rest period. The five women subjects randomly wore sportswear without slit ventilation system(NS sportswear) and sportswear with slit ventilation system(S sportswear) under the environmental condition of $25^{\circ}C$, 50%RH. The results of this study are as follows; Rectal temperature, mean skin temperature, clothing microclimate, blood pressure, heart rate, energy metabolism and body weight loss were significantly lower level in 'S sportswear'. In 'S sportswear', subjects replied less hot, less uncomfortable and less wet. Slit ventilation system can be used for bellow effect which is meaningful device of convection during exercise. We could find out that 'S sportswear' has advantage in physiological function.

반팔 내의-전투복-화생방보호의 시스템에서 환기가 열적 스트레스에 미치는 영향 (Effect of Ventilation on Heat Stress in the System of Short-Sleeve T-Shirt-Combat Uniform-Chemical, Biological, and Radioactive Protective Clothing)

  • 이옥경;엄란이;정희수;조경민;이예진
    • 한국의류학회지
    • /
    • 제46권5호
    • /
    • pp.836-847
    • /
    • 2022
  • This study establishes basic data for the development of a new Chemical, Biological, and Radioactive (CBR) protective clothing by selecting the ventilation position to optimize thermal comfort on the basis of the opening and closing of each part. Participants were eight men in their 20s who had previously worn CBR protective clothing. After vigorous exercise and perspiration, the microclimate of the clothing and skin temperature was measured. Results revealed that when the ventilation zipper was opened after exercising, the skin and clothing microclimate temperatures, which had increased during the exercise, decreased in the chest and shoulder blade regions. The clothing microclimate humidity decreased in the chest area. The change was greatest in the chest region; the skin temperature decreased by 0.2℃, the clothing microclimate temperature by 2.7℃, and the clothing microclimate humidity by 3.2%RH through ventilation. Thus, the opening that allows the exchange of accumulated heat and moisture while wearing the CBR protective clothing is efficient.

등온 환경하에서 개구부를 통한 의복의 환기 효율 (Ventilation Efficiency of Clothing through Openings under an Isothermal Condition)

  • 추미선
    • 복식문화연구
    • /
    • 제6권4호
    • /
    • pp.229-237
    • /
    • 1998
  • The ventilation efficiency of clothing was investigated by a trace gas method using a manikin wearing an impermeable overall under an isothermal condition, where the ventilation occurred only through the openings by diffusion. The ventilation patterns were different for each part of the body. The ventilation efficiency in the clothing microenvironment of the arm and the leg greatly depended on the distance from each opening when the wrist- or the ankle-opening was opened. When both side of wrist- or ankle-openings were opened to provide the opening area double respectively, the ventilation efficiency did not correspondingly increase twice, as compared one side opened. Even though it as certainly affected by the opening area, the ventilation efficiency was more significantly influenced by the position of openings.

  • PDF

G.C를 이용한 Ventilation 측정방법과 Ventilation에서의 블라우스형태변화의 영향 (Method of Ventilation by Gas Chromatography and the Effects of the Type of Blouse)

  • 박우미;최철호
    • 한국의류학회지
    • /
    • 제16권1호
    • /
    • pp.53-63
    • /
    • 1992
  • The purpose of this study is to investigate the method of trace gas technique by G.C and the effects of the type of blouse on ventilation. The experimental system employed a trace gas technique in which ventilation was monitored to determine oxigen exchange rate. The experimental variables were tested with three types of blouse depending on the sizes of neckline, armhole and waist line. Exercise conditions include standing and walking position. The results and discussion forcused on the construct validity of the apparatus/testing protocol. the effect of experimental variables on ventilation was also discussed.

  • PDF

블라우스내에 형성되는공기층이 의복내환기에 미치는 영향 연구 (The Effects of Blouse Types on Ventilation Clothing Microclimate)

  • 박우미;최철호
    • 한국의류학회지
    • /
    • 제16권2호
    • /
    • pp.169-180
    • /
    • 1992
  • The purpose of this study is to investigate the effects of type of clothing microclimate and exercise condition on ventilation. The experimental system employed a trace gas technique of the previous research. Clothing microclimate volume measurement was based on the substitution water technique for inter-clothing air volume. The experimental variables were tested at four levels of clothing microclimate spacing, microclimate shape of the previous research and two levels of exercise conditions. 2, 4, 6 cm ease were added to B/2+4 of basic blouse pattern for the microclimate spacing variable. Each combination of three variables were tested in triplicate. Analysis of variance of experimental variables on vetilation, such as oxygen exchange rate, half time of first order model was conducted. Oxygen exchange rate and half time of first order model are affected by the shape of microclimate air and exercise condition.

  • PDF

통기성 향상을 위한 하계비행복 설계 및 착용쾌적성 평가 (Wearing Comfort Evaluation of a Summer Flight Suit to Improve Ventilation)

  • 전은진;박세권;유희천;김희은
    • 한국의류산업학회지
    • /
    • 제16권3호
    • /
    • pp.485-491
    • /
    • 2014
  • This study verified the effect of summer flight ventilation developed in a previous study based on wearing comfort evaluation. Seven healthy males in their twenties volunteered for this experiment conducted in aclimatic chamber. The experiment consisted of three consecutive periods of rest (20 minutes), running on a treadmill (10 minutes) and recovery (20 minutes). A comparative evaluation was conducted on the general flight suit which had no ventilation holes and summer flight suit that use subjective satisfaction measures and objective measures. The subjective satisfaction was evaluated according to the criteria of temperature sensation, wet sensation, thermal comfort and fatigue sensation. The objective satisfaction was measured by skin temperature, microclimate (temperature and humidity), sweat rate and thermography. The comparative wearing evaluation identified the summer flight suit decreased the temperature between skin and suit by $0.42^{\circ}C$ (upper arm), $0.9^{\circ}C$ (calf) and the skin temperature by $0.3^{\circ}C$ (shoulder), $0.4^{\circ}C$ (upper arm), $0.5^{\circ}C$ (calf) as compared to the general flight suit. The humidity inside the summer flight suit decreased at head (7.73%), shoulder (5.86%), upper arm (5.26%), and calf (8.73%) compared to the one inside the general flight suit. Thermography showed that the air flowed through ventilation holes (neck and armpit). The design of ventilation holes applied to the summer flight suit can be applicable to overall clothing that requires thermal comfort such as dust-free garments, mechanical clothing and combat uniforms.

의복을 활용한 열중증 예방 대책에 관한 연구 동향 조사: 일본의 실용 지향적 연구를 중심으로 (Research trends on prevention of heat stroke using clothing: Focusing on practical research in Japan)

  • 손수영
    • Human Ecology Research
    • /
    • 제56권5호
    • /
    • pp.473-491
    • /
    • 2018
  • This study identifies Japanese study content on heat stroke prevention measures using clothes, provides basic data for quantitative wearing assessment studies, presents a developmental direction for those, and helps invigorate further research. Studies were collected concerning clothing-based heat stroke measures in order to analyze the following factors: current status of heat stroke by industry and working environment, heat stroke and body cooling method, clothing microclimate and air circulation in a hot environment, hot environments and wearable sensors, and heat stress reduction and skin exposure. The current WBGT standard does not consider the diversity of wearing clothes according to the working environment. Therefore, it is preferable to add a correction value in consideration of design, materials, and ventilation to prevent heat strokes. For the heat stroke and body cooling method, wearing water-perfused clothing is effective to reduce heat stress and maintain exercise ability. Changing the material and design of clothing or wearing air-conditioned clothing can improve ventilation and the clothing microclimate. However, further evaluation is needed on the effectiveness of air-conditioned clothing as a heat stroke prevention product. The measurement method using a wearable sensor can provide real-time data on the body response due to working in a hot environment. Therefore, it is an effective alarm for heat stroke. Skin exposure area and heat dissipation efficiency should be considered to prevent heat stroke. Reducing the covering area by exposing the head, neck, and limbs, and wearing breathable material can prevent heat stroke from increased body temperature.