• Title/Summary/Keyword: clothing thermal insulation

Search Result 98, Processing Time 0.023 seconds

Effect of Clothing Habit on Climatic Adaptation by Female High School Students (여고생 착의습관이 기후적응에 미치는 영향)

  • 안필자
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.5
    • /
    • pp.615-621
    • /
    • 1994
  • This study was carried out to investigate the effect of clothing habit on physiological adaptation to the change of season. The survey of clothing weight in fall '||'&'||' winter for 2 years, the frequency of cold infection in winter and degree of fatigue was performed with 110 female high school students. The actual condition of clothing and the correlations between clothing weight and cold infection, and between the clothing weight and degree of fatigue were suveyed. The results are followed as; 1. The clothing insulation was nearly same to indoor standard clothing insulation in H hun wearing normal clothing, but was higher 2 clo in S hun clothed uniform. Especially in spite of similar enviromental condition the clothing weight, minimum '||'&'||' maximum and variation of clothing weight for 2 years were showed to be heavier in S hun than H hun. Also indoor thermal sensation felt by the subjects indicated "cold", and the difference between clothing insulation and standard clothing insulation showed increase gradually. 2. L group was indicated to be lower in cold infaction ratio than M '||'&'||' H group, and the correlation between clothing group and cold infection ratio was recognized to be significant (p<0.05). And H hun and L-H group showed to be lower in cold infection ratio than S hun, H-L group. 3. The coefficience between clothing weight and degree of fatigue was recognized to be significant (p<0.05).

  • PDF

Thermal Comfort Aspects of Pesticide-protective Clothing Made with Nonwoven Fabrics

  • Choi Jong-Myoung;Tanabe Shin-Ichi
    • International Journal of Human Ecology
    • /
    • v.3 no.1
    • /
    • pp.55-72
    • /
    • 2002
  • The purpose of this study was to evaluate the thermal resistance of pesticideprotective clothing and to investigate its subjective wear performance. Three different nonwoven fabrics, which provide barrier properties against water and pesticide, were used to manufacture the experimental clothing: spunbonded nonwoven (SB), spunbonded/meltblown/spunbonded nonwoven (SM), and spunlaced nonwoven (SL). The thermal insulation values of the experimental clothing were measured with a thermal manikin, and other wear trials were performed on human subjects in a climate chamber at $28^{\circ}C$, with 70% R.H. and air movement at less than 0.15m/s. Our results found that the thermal resistance was lower in the SB experimental clothing than in the others; that the mean skin temperature of subjects who wore the experimental clothing made with SL was significantly lower than that of subjects who wore the SB and SM clothing; and that the microclimate temperature and humidity with SB were significantly higher than that of the others. Overall, the experimental clothing made with SL was more comfortable than the others in terms of subjective wear sensations.

The Effect of Adjustable Garment Closures and Layering on Insulation in Cold Weather

  • Kim, Chil-Soon;McCullough, Elizabeth
    • Fashion & Textile Research Journal
    • /
    • v.3 no.5
    • /
    • pp.479-485
    • /
    • 2001
  • This study was to determine the effect of garment closures and layering systems on insulation, using a thermal movable manikin in cold weather conditions. The insulation values of ensembles with opened and closed features were measured, and those of four different layered clothing ensembles were tested while standing and while walking. Our research indicated that when there was an opening involved in design the system, insulation decreased; even a zip-out lining in the armpit affected little. If a light weight jacket and pants are put on over a fleece shirt and pants instead polyester underwear, the amount of insulation increase was 0.43 clo.

  • PDF

The effect of air velocity on the thermal resistance of wool ensembles (풍속변화에 따른 순모의류의 온열특성)

  • 송민규;전병익
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.5
    • /
    • pp.565-574
    • /
    • 1998
  • The purpose of the study was to determine the effect of air velocity on the thermal resistance of wool ensembles. Three suits for men with different weaving structure and density were made with the same design and size for the study. In addition, Y-shirt, underwear, and socks were prepared for constructing the ensembles. Thermal insulation of air layer and 3 ensembles were measured by using thermal manikin in environmental chamber controlled at 2$0^{\circ}C$ and 65% RH with various air velocity. The results were as follows: 1. Thermal resistance of air layer was 0.079 m2.$^{\circ}C$/W with no air velocity(less than 0.2m/sec). 2. Thermal resistance of air layer decreased with increasing the air velocity rapidly. When the air velocity was 0.25 and 2.89 m/sec, the decreasing rate was 15% and 61%, respectively compared with no air velocity. 3. While there was little difference among the effective thermal insulation of 3 ensembles having different weaving structure and density with no air velocity, there was sharp difference among them when the air velocity increased. That is, the decreasing rate of effective thermal insulation of the ensemble which has higher air permeability was higher. 4. The decreasing rates of the effective thermal resistances of plain, twill and satin ensemble were 61, 54, and 49%, respectively when the air velocity was 2.89 m/sec which was a maximum air velocity in this study.

  • PDF

Evaluation for the Heating Performance of the Heated Clothing on Market (시판 발열의복의 발열성능 평가)

  • Lee, Hyun-Young;Jeong, Yeon-Hee
    • Fashion & Textile Research Journal
    • /
    • v.12 no.6
    • /
    • pp.843-850
    • /
    • 2010
  • To evaluate the heating performance of commercial heated vests, we investigated the thermal images and the temperature between body and vest for three heated vests. We captured infrared thermography by FT-IR Spectrometer to analyzed the heating temperature of the heating elements taken from the vests, and the maximum heating temperature of the vests was compared with thermal image in the room temperature($18^{\circ}C$). In outdoor experiment($-4.7^{\circ}C$), we measured the inner temperature as well as the thermal image of heated vests. Four healthy men participated in this experiment, and the ANOVA and Duncan test was performed for statistical analysis. As the results, the heating temperature range of the heated vests used in this experiment was $32{\sim}42^{\circ}C$, much lower than the displayed temperature range in their specifications, so the exact specification for heating performance of heated clothing was required. In comparisons of the heating performance among the heated vests, we found out that the insulation of clothing is very important to design the heated clothing, because the inner temperature of the vest had good insulation by itself was higher than that of the vest shown higher temperature over $7^{\circ}$ than another vests at the heating temperature.

Study on Ultra Porous Aerogel/fiber Composite for Shoe Insole (초다공성 에어로젤 함유 섬유상 복합체를 이용한 신발 안창소재에 관한 연구)

  • Oh, Kyung-Wha;Park, Soon-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.5
    • /
    • pp.701-710
    • /
    • 2009
  • This study was conducted to develop excellent insole with good thermal insulation using new materials. We investigated that aerogel/fiber composite can be used as padding materials of shoes by comparing surface shape, moisture regain, water vapor permeability, thermal insulation and compression rate of insole materials tried with nonwoven fabric padding materials and insole sold in market. The results are as follows. Surface shapes were shown that the most appropriate material for sealing aerogel/fiber composite was high density fabric as per size of particle of aerogel. Moisture regain of aerogel/fabric composite was better than nonwoven fabric padding samples. However, when compared to insole sold in market, its moisture regain was worse than those of insole merchandises. Water vapor permeability was higher in material padded with nonwoven fabric than materials padded with aerogel/fiber composite in all three kinds of sealing fabrics. Thermal conductivity of aerogel/fabric composite was lower than nonwoven fabric material regardless of sealing fabrics. Thermal insulation of aerogel/fiber composite was higher than padding material of nonwoven fabric regardless of sealing fabrics. Compression rate of nonwoven (SP1) was higher than that of aerogel/fiber composite (SP2). Compressive elastic recovery rate of SP1 was also higher than that of SP2, which its compression rate and compressive elastic recovery rate were both poor. As the above result, ultra porous aerogel/fiber composite were proved to be material of good thermal insulation with lower thermal conductivity and also compression rate was proved to be low. Therefore, we can say that aerogel/fiber composite have high possibility to be used as insole materials for cold winter shoes requiring good thermal insulation protection.

Comparisons of Thermal Insulations between on Air-Cell Pack Embedded Jacket and Down Jackets (공기주입형 의복의 보온력 측정 및 다운재킷의 보온력과의 비교)

  • Kim, Yung-Bin;Jang, Won;Kim, Kirim;Kim, Siyeon;Baek, Yoon Jeong;Lee, Joo-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • This study investigated the thermal insulation of an air-cell pack embedded jacket and down jackets to understand the potential of air-cell pack as a filler for winter outdoor wear. A thermal manikin measured the thermal insulation of the following jackets: HD (heavy down jacket, total weight (Tw) 750g, goose down weight (Dw) 350g), LD (light down jacket, Tw 560g, Dw 140g), AF (air-cell pack embedded jacket, Tw 490g, trunk goose down in LD was replaced to air cell), F (film jacket, Tw 469g, but removed the air in the air-cell pack from the AF), and Control (control jacket, Tw 438g, removed the air-cell pack film from the F). Thermal insulations of each experimental condition were measured in a static standing posture. Total thermal insulations (IT) were 1.29clo (HD), 1.23clo (LD), 1.16clo (AF), 1.20clo (F), and 1.08clo (Control). Body regional thermal insulation was higher in the chest and back than in the abdomen and hip in all conditions. The results suggest that an economical and versatile outdoor jacket with superior thermal insulation will be feasible if the air volume is properly controlled in air-cell pack embedded jackets in consideration of regional different distribution and used in combination with film and down.

The Effects of Textiles for Thermal Insulation Value Using a Thermal Manikin (써멀 마네킹 착용실험에 의한 보온력에 미치는 의복소재의 영향)

  • Son Won-Kyo;Choi Jeong-Wha
    • Journal of the Korean Home Economics Association
    • /
    • v.37 no.12 s.142
    • /
    • pp.141-151
    • /
    • 1999
  • This study was carried out to examine the effects of textile materials for thermal insulation value using a thermal manikin. Cotton, polyester, wool, silk and rayon were selected as outer wears like blouses, skirts, slacks, and one-pieces. Acetate was chosen as a lining. Brief and long sleeve upper underwear(cotton) were chosen as the inner wears. The results were as follows; There were no significant differences among the materials in skirts and blouse-skirt suits by the thermal manikin. However blouses, slacks, one-pieces and blouse-slacks suits were showed the effects of materials. Blouse-slacks suits was showed the highest thermal insulation value and one-piece had the lowest thermal insulation value.

  • PDF

An Approach to Improve Thermal Insulation Properties and Fabric Hand of Wool and Wool-like Fabrics under High Molecular Polyethylene Glycol Treatment (고분자량 Polyethylene Glycol 처리에 따른 모직물과 유사모직물의 보온성과 태의 향상 방안 모색)

  • 조길수;이은주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.6
    • /
    • pp.1041-1050
    • /
    • 1997
  • This study was carried out to improve the thermal insulation properties of wool and wool- like fabrics by treating the fabrics with polyethylene glycol, to evaluate the fabric hand of PEG treated wool and wool-like fabrics and to grade up the fabric hand of the treated fabrics by treating with softening agents. Wool and wool-like fabrics were treated with high molecular PEG-8,000 by PDC. The thermal release/storage properties were measured on a DSC. Hand of specimens were evaluated by KES-FB system. The results were as follows; 1. PEG-treated fabrics showed thermal storage and thermal release properties by DSC and the heat contents were generally proportional to the add-ons. 2. PEG-treated fabrics showed higher Koshi and lower Numeri and Sofutosa values due to lower tensile energy and recovery and higher bending rigidity and shear stiffness as the add- ons increased. 3. PEG-treated fabrics showed much lower bending rigidity after softening agents treatment.

  • PDF

Prototype Intelligent Thermal Mountain Climbing Jacket Embedded with a Two Way Shape Memory Alloy (이방향 형상기업합금을 이용한 지능형 보온성 등산용 자켓의 프로토타입 개발)

  • Lee, Ji-Yeon;Shin, Yeon-Wook;Kim, Hee-Jung;Baek, Bum-Ki;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.1
    • /
    • pp.92-101
    • /
    • 2010
  • This study reports on the development of intelligent clothing using a shape memory alloy (SMA) that forms a still air layer and provides thermal insulation depending on the environment temperature. SMA springs were prepared with Nitinol and have an original length of 6mm and a latent length of 20mm with a response temperature of $24.5^{\circ}C$. Hysteresis was evaluated at a temperature between $0^{\circ}C$ and $40^{\circ}C$. An experimental outdoor jacket that was attached with 30 springs was compared with a commercial jacket in terms of the microclimate temperature, humidity, and comfort properties by human subject tests in the microclimate chamber set at $5{\pm}0.5^{\circ}C$. The results showed that the microclimate temperature of SMA embedded clothing system from the wear trials was higher than the commercial ones during the rest period after exercise, especially on the skin side. In addition the thermal, humidity, and comfort sensations of SMA embedded clothing were better than the commercial ones.