• Title/Summary/Keyword: closed unsanitary landfill

Search Result 5, Processing Time 0.027 seconds

Case Study of Remidation and Investigation of Closed Unsanitary Landfill for Prevention of Leachate (비위생매립지 정밀조사 및 침출수 방지를 위한 정비방안 연구)

  • Kim, Sangkeun;Lee, Yongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.5-13
    • /
    • 2012
  • For the last decade the amount of waste has rapidly been increased in South Korea and many waste landfills have been built according to government guidelines specifying required systems such as landfill liner, leachate collecting facilities, final cover system, etc. This effort has led the recently constructed landfills to be under well managed sanitary condition. In a meanwhile closed waste-landfill sites in the past before the adoption of the government guidelines exits under unsanitary condition. In these cases untreated leachate flew out to the surroundings due to the absence of liner and leachate collecting facilities and caused groundwater and soils to be contaminated. Waste generated odor and gas also brought civil complaints. Because environmental influences bring serious problems nearby sites, it is required to have unsanitary waste-landfills to be appropriately treated and managed. A study to evaluate environmental influence and contamination level of surroundings nearby and on the unsanitary landfills is necessary before the establishment of "Management guide of closed landfill site." This paper presents an environmental evaluation for the closed site, Doil-dong landfill, according to "Closed landfill management regulation" by Ministry of Environment. "D" landfill, located in Pyeongtaek city, has possobility to contaminate surrounding surfacewater and groundwater by leakage of leachate. The in-situ stabilization carried out to build the DMW(deep soil mixing cutoff wall) wall and drainage systems.

사용종료 매립지 주변 토양 및 지하수 환경성 분석

  • 김상근;정하익;이용수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.188-191
    • /
    • 2003
  • Soil and ground water environments around closed landfill is very important to estimate a environmental stabilization of landfill. In this study, geoenvironmental investigation was carried out for closed unsanitary landfill in Gyeonggido. Geotechnical and environmental characteristics of ground water and soil around this landfill site was evaluated for analysis of its environmental situation.

  • PDF

Reuse Alternatives Analysis of Closed Unsanitary Landfills (사용종료 비위생 매립 부지의 활용 방안 연구)

  • Kim, Taedong;Park, Jong-Woong;Choi, Donghyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3997-4001
    • /
    • 2014
  • The aim of this study was to suggest site-specific reuse alternatives for closed unsanitary landfills (CULs) scattered in Gyeongbuk Province. The CULs were classified with the factors affecting the site reuse alternative to provide basic data for systematic site reuse. Statistical analysis showed that the site area was the main factor in site classification among the site area, distance to road, and distance to the village. The results proposed a site-specific guide flow to the reuse of the CULs.

Estimation of Greenhouse Gas Reduction Potential by Treatment Methods of Excavated Wastes from a Closed Landfill Site (사용종료매립지(使用終了埋立地) 폐기물(廢棄物)의 처리방법별(處理方法別) 온실(溫室)가스 저감량(低減量) 평가(評價))

  • Lee, Byung-Sun;Han, Sang-Kuk;Kang, Jeong-Hee;Lee, Nam-Hoon
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.3-11
    • /
    • 2013
  • This study was carried out to estimate greenhouse gas reduction potentials under treatment methods of combustible wastes excavated from closed landfill. The treatment methods of solid wastes were landfilling, incineration, and production of solid recovery fuel. The greenhouse gas reduction potentials were calculated using the default emission factor presented by IPCC G/L method of IPCC (Intergovernmental Panel on Climate Change). The composition of excavated waste represented that screened soil was the highest (65.96%), followed by vinyl/plastic (19.18%). This means its own component is similar to the other excavated waste from unsanitary landfill sites. Additionally, its bulk density was 0.74 $t/m^3$. In case of landfilling of excavated waste, greenhouse gas emission quantity was 60,542 $tCO_2$. In case of incineration of excavated waste, greenhouse gas emission quantity was 9,933 $tCO_2$. However, solid recovery fuel from excavated waste reduced 33,738 $tCO_2$ of the greenhouse gas emission quantity. Therefore, solid recovery fuel production is helpful to reduce of greenhouse gas emission.

Comparative Assessment of Specific Genes of Bacteria and Enzyme over Water Quality Parameters by Quantitative PCR in Uncontrolled Landfill (정량 PCR을 이용한 비위생 매립지의 특정 세균 및 효소 유전자와 수질인자와의 상관관계 평가)

  • Han, Ji-Sun;Sung, Eun-Hae;Park, Hun-Ju;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.895-903
    • /
    • 2007
  • As for the increasing demanding on the development of direct-ecological landfill monitoring methods, it is needed for critically defining the condition of landfills and their influence on the environment, quantifying the amount of enzymes and bacteria mainly concerned with biochemical reaction in the landfills. This study was thus conducted to understand the fates of contaminants in association with groundwater quality parameters. For the study, groundwater was seasonally sampled from four closed unsanitary landfills(i.e. Cheonan(C), Wonju(W), Nonsan(N), Pyeongtaek(P) sites) in which microbial diversity was simultaneously obtained by 16S rDNA methods. Subsequently, a number of primer sets were prepared for quantifying the specific gene of representative bacteria and the gene of encoding enzymes dominantly found in the landfills. The relationship between water quality parameters and gene quantification were compared based on correlation factors. Correlation between DSR(Sulfate reduction bacteria) gene and BOD(Biochemical Oxygen Demand) was greater than 0.8 while NSR(Nitrification bacteria-Nitrospira sp.) gene and nitrate were related more than 0.9. A stabilization indicator(BOD/COD) and MTOT(Methane Oxidation bacteria), MCR(Methyl coenzyme M reductase), Dde(Dechloromonas denitrificans) genes were correlated over 0.8, but ferric iron and Fli(Ferribacterium limineticm) gene were at the lowest of 0.7. For MTOT, it was at the highest related at 100% over BOD/COD. In addition, anaerobic genes(i.e., nirS-Nitrite reductase, MCR. Dde, DSR) and DO were also related more than 0.8, which showing anaerobic reactions generally dependant upon DO. As demonstrated in the study, molecular biological investigation and water quality parameters are highly co-linked, so that quantitative real-time PCR could be cooperatively used for assessing landfill stabilization in association with the conventional monitoring parameters.