• Title/Summary/Keyword: clonogen

Search Result 2, Processing Time 0.014 seconds

Isolation and Characterization of Mammary FpithelialStem Cells in Culture (유선상피 간세포의 분리 및 특성연구)

  • ;;Kelly H. Clifton
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • The mammary gland contains a subpopulation of epithelial cells with large proliferative potentials which are the likely targets for carcinogens. These clonogenic cells can proliferate and differentiate into functional glandular structures. Rat mammary epithelial cells (RMEC) were isolated and characterized in vitro. By flow cytometry of RMEC stained with fluorescein isothiocyanate-peanut agglutinin(PNA) and phycoerythrin anti-Thy-1.1 monoclonal antibody, it was possible to four cell subpopulations from 7-8 week old F344 female rat mammary glands: cells negative to both reagents (B-), PNA-positive cells (PNA+), Thy-1.1-positive cells (Thy-1.1+), and cells positive to both reagents (B+). When single PNA+ cells were isolated and cultured in Matrigel with irradiated (∼50 Gray) 3T3 fibroblast feeder layer, they gave rise to multicellular clonal structures of three types: alveolar, foamy alveolar, and squamous colonies. The developed structures were similar to the mammary glands in vivo. These results suggest that some of PNA+ cells possesses many of the characteristics of multipotent clonogenic stem-like cells.

  • PDF

Persistence of Stem-like Cells in Glandular Structures in Mammary Cell Grafts (유선상피세포 이식편으로부터 생성된 유선구조물 내의 상피간세포 지속성 연구)

  • ;;Kelly H. Clifton
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.22-36
    • /
    • 2000
  • The mammary gland contains a subpopulation of epithelial cells with large proliferative potentials which are the likely targets for carcinogens. These clonogenic cells can proliferate and differentiate into functional glandular structures. Multicellular secretory alveolar units (AU) develop from these clonogens in grafts of monodispersed rat mammary epithelial cells (RMEC) in gland-free mammary fat pads in intact recipient F344 rats co-grafted with mammotropic hormone-secreting pituitary tumors (MtT F4). Multicellular nonsecretory ductal units (DU) develop in grafts of monodispersed RMEC in gland-free fat pads in adrenalectomized recipient WF rats co-grafted with MtT W10. However, this effect were reversed by hydrocortisone replacement therapy. RMEC were isolated from appropriate donor rats as monodispersed mixed cells or, alternatively, RNA+ cells were sorted by flow cytometry of mixed RMEC stained with FITC-RNA and PE-anti-Thy-1.1 monoclonal antibody. We grafted mixed or sorted PNA+ cells in gland-free mammary fat pads in recipient rats that were endocrinologically manipulated to induce AU or DU. Cells were also isolated from these AU or DU as mixed or sorted RNA+ cells and sub-transplanted in recipient rats treated appropriately to induce AU or DU, respectively. Cells obtained from AU in grafts gave rise to clonal AU and from DU in grafts to DU on sub-transplantation in appropriate recipients. When adrenalectomized recipient WF rats co-grafted with MtT W10 received daily subcutaneous injections of hydrocortisone for periods of 21 days following the PHA+ cell transplantation, AU, instead of DU, were developed. The histologies of these secondary AU and DU were not different from those of the primary AU and DU. Casein and laminin proteins were demonstrated by immunocytochemical staining of primary and secondary AU. Electron micrographs also demonstrated that AU were composed of secretory cells with milk protein in the cytoplasm. DU were composed of little or non-secretory ductal epithelial cells. These AU and DU also secreted large amounts of lipids. Clonogenic cells were more common in DU than in AU. Thus, AU and DU contain persistent subpopulations of clonogenic stem-like cells.

  • PDF