• Title/Summary/Keyword: clonidine

Search Result 104, Processing Time 0.021 seconds

Vasomotor Regulation of the Israeli Carp (Cyprinus carpio) Ventral Aorta by Cholinergic and Adrenergic Neurotransmitters (콜린성 및 아드레날린성 신경전달물질에 의한 이스라엘잉어 복대동맥의 혈관긴장도 조절기능)

  • Park, Kwan-Ha
    • Korean Journal of Ichthyology
    • /
    • v.12 no.1
    • /
    • pp.38-45
    • /
    • 2000
  • Depending on the fish species the vascular tone is distinctively regulated by numerous vasoactive substances. In most fish species the regulatory role of autonomic neurotransmitters and other vasoactive substances are not well defined. This research was designed to delineate the regulatory role of various endogenous autonomic neurotransmitters known to be important in mammalian vascular systems on isolated Israeli carp ventral aorta. Acetylcholine(ACh) contracted the aorta regardless of the pre-existing level of vascular tone, and the contraction was almost completely abolished by a cholinergic-muscarinic antagonist atropine. Endogenous, multiple receptor ($\alpha$ and $\beta$)-acting adrenergic agonist epinephrine (Epi) relaxed the vessel in the presence and absence of the pre-existing tones. Another endogenous multiple receptoracting agonist norepinephrine (NE) weakly contracted the aorta in non-preconstrcted state, but the response was reversed to relaxation when preconstricted. Isoproterenol, ${\alpha}\;{\beta}$ adrenergic receptor agonist, was a potent vasodilator whereas an ${\alpha}_1$ agonist phenyephrine was a contractor. The ${\alpha}_2$ adrenergic receptor agonist clonidine has not any significant effect in altering the vascular tone. The vasorelaxing action of Epi, NE and isoproterenol was significantly attenuated by $\beta$ receptor antagonist propranolol. These results imply that ACh may primarily play a contractor role via muscarinic receptor activation while adrenergic agonists, Epi and NE, are relaxants through activation of $\beta$ adrenergic receptors in vivo.

  • PDF

Association of Schizophrenia with Pathological Aging : A Behavioral and Histological Study Using Animal Model (정신분열병과 병적 노화의 연관성 : 동물모형을 이용한 행동 및 조직학적 연구)

  • Cheon, Jin-Sook;Oh, Byoung-Hoon;Chang, Hwan-Il
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.83-94
    • /
    • 1998
  • Objectives : Phencyclidine(PCP) or PCP-like substances such as ketamine have been known to rekindle the cognitive dysfunction in schizophrenia. The aims of this study were to identify whether PCP-like substances can produce cognitive deficit in schizophrenia, to discuss relation with aging process, and finally to speculate underlying neurochemical mecha-nisms by various drug responses. Methods : In experiment I, radial maze tests were done in 24 Sprague-Dawley rats for 3 days to get baseline data. Being divided into 4 groups(6 rats respectively) of normal aged, normal adult controls, atropine-treated and ketamine-treated, the radial maze tests were repeated on every week for 6 weeks, and then the rats were sacrificed by intracardiac perfusion with phosphate-buffered 10% formaldehyde solution for histology. The brain specimen was stained with hematoxylin-eosin to count cells in the prefrontal cortex and hippocampus. In experiment II, radial maze tests were done for 48 rats before any drug treatment and only after ketamine administration. Thereafter, haloperidol, bromocriptine, clonidine, nimodipine, tacrine, valproic acid, naloxone and fluoxetine were intramuscularly injected on every other day in addition to ketamine. Radial maze tests were repeated on every week for 6 weeks, and then rats were prepared by the same procedure for histology. Results : 1) Reaction times of radial maze tests of atropine-treated rats were significantly prolonged than those of normal aged(p<0.05) or normal adult controls(p<0.05). Cell numbers of prefrontal cortex & hippocampus in ketamine-treated rats were significantly reduced than those in normal aged (p<0.05) or normal adult controls(p<0.005). 2) Reduced cell numbers by ketamine became significantly raised by tacrine administration in prefrontal cortex & hippocampus(p<0.05), while there were no significant changes on radial maze tests. Cell numbers also tended to be raised by nimodipine, fluoxetine and haloperidol administration. Conclusions : In conclusion, the visuospatial memory disorders in ketamine-induced psychotic rats might be partly asso-ciated with aging process. Furthermore, the responses to the various drugs suggested cholinergic system might have an important role in the neurochemical mechanism of the cognitive dysfunction in ketamine-induced psychosis. Otherwise, calcium metabolism as well as serotonergic and dopaminergic systems seemed to be possibly related.

  • PDF

Growth responses to growth hormone therapy in children with attenuated growth who showed normal growth hormone response to stimulation tests (성장호르몬 자극검사가 정상인 성장 장애 소아 환자에게서 성장호르몬 투여에 따른 성장속도의 변화)

  • Kim, Jae-Hyun;Chung, Hye-Rim;Lee, Young-Ah;Lee, Sun-Hee;Kim, Ji-Hyun;Shin, Choong-Ho;Yang, Sei-Won
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.8
    • /
    • pp.922-929
    • /
    • 2009
  • Purpose : The aim was to investigate the clinical characteristics and responses to growth hormone (GH) therapy in children with attenuated growth who showed normal GH responses to GH stimulation tests (GHST). Methods : The study included 39 patients with height velocity (HV) of less than 4 cm/yr and normal GHST results. Clinical characteristics of patients were analyzed retrospectively. Results : Eleven were born as small for gestational age (SGA) and 28 as appropriate for age (AGA). In the SGA group, the standard deviation score (SDS) of age and height measured at their first visit was significantly low. Sixteen patients were treated with GH and six of 23 without GH therapy were followed for 1 year after GHST. The mean (range) of HV was 7.7 (4.9 to 11.1) cm/yr in patients with GH therapy and 3.7 (2.7 to 4.5) cm/yr in those without GH therapy, which was statistically significant (P<0.001). In the GH-treated group, HV and difference in height SDS during the treatment increased significantly (P<0.001; P< 0.001, respectively). HV increased after 1 year of GH therapy in the SGA and AGA groups (SGA, P=0.043; AGA, P=0.003). The level of Insulin-like growth factor-I was significantly lower in GH-treated patients with height SDS <-3 than those with ${\geq}3$ (P=0.023). Conclusion : In children with growth failure and normal GHST, HV increases significantly by short-term GH therapy. The assessment of long-term effects of GH therapy is necessary. Moreover, further studies should be considered to evaluate the GH-IGF-I axis due to the possibility of GH insensitivity syndrome.

Influence of Intracerebroventricular Yohimbine on the Renal Function of the Rabbit (가토 신장기능에 미치는 측뇌실내 Yohimbine의 영향)

  • Kook, Young-Johng;Kim, Kyung-Keun;Kim, Sei-Jong
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.119-127
    • /
    • 1985
  • The renal function is under regulatory influence of the central nervous system, mainly through activation of sympathetic nerve to the kidney, and it was recently reported that clonidine, an agonist to ${\alpha}_2$-adrenoceptors, induces diuresis and natriuresis when injected directly into a lateral ventricle of the rabbit brain (i.c.v.). This study was undertaken, therefore, to obtain further information as to the role of the central ${\alpha}_2$-adrenoceptors in regulating renal function, by observing the effects of i.c.v. yohimbine, a specific antagonist of adrenoceptors of ${\alpha}_2$-type, on the rabbit renal function, and to elucidate the mechanism involved in it. With 10 ${\mu}g/kg$ i.c.v. of yohimbine sodium excretion transiently increased along with increasing tendency of urine flow, renal plasma flow and glomerular filtration rate. These responses decreased with increasing doses. With 100 and 300 ${\mu}g/kg$ i.c.v. marked antidiuresis and antinatriuresis as well as profound decreases of renal perfusion and glomerular filtration were noted. Systemic blood pressure transiently increased. In reserpinized rabbits, 100 ${\mu}g/kg$ yohimbine i.c.v. did not produce any significant changes in urine flow, sodium excretion as well as in renal hemodynamics. The pressor response was also abolished. In preparations in which one kidney was denervated and the other left intact as control, i.c.v. yohimbine elicited typical antidiuretic antinatriuretic response in the innervated control kidney, whereas the denervated experimental kidney responded with marked diuresis and increases in excretory rates of sodium and potassium and in osmolar clearance in spite of absence of increased filtration and perfusion . Systemic blood pressure responded as in the normal rabbits. These observations indicate that i.c.v. yohimbine affects renal function in dual ways in opposite directions, the first being the antidiuretic antinatriuretic effects which results from decreased renal perfusion and glomerular filtration due to sympathetic activation and which is predominantly expressed in the normal rabbits, and the second less apparent effect being the diuretic and natriuretic action which is not mediated by nerve pathway but brought about by some humoral mechanism and which is effected by decreased sodium reabsorption in the tubules, possibly of the proximal portion.

  • PDF