• Title/Summary/Keyword: climatic terrace model

Search Result 2, Processing Time 0.016 seconds

Did Fluvial Terrace of Mountain Streams in Korea Form in Each Glacial Stage? (우리나라 산지 하천의 하안단구는 매 빙기마다 형성되었는가?)

  • Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.19-30
    • /
    • 2019
  • This study summarizes domestic and foreign previous works on fluvial terrace with absolute ages to discuss formative process of climatic terrace in Korea. Different from traditional climatic terrace model, approximately three quarters from foreign works have argued that formation of climatic terrace can be attributed to medium- and short-term climatic change or other environmental factors, rather than long-term climatic change of glacial and interglacial cycles. Based on previous works on fluvial terrace in Korea, it can be suggested that fluvial terrace in Korea formed not due to long-term climatic change of 100,000-year cycles related to glacial and interglacial cycles, but due to medium- and short-term climatic change or climatic event of tens of thousands of years related to intensity change in summer monsoon, one of the important factors affecting precipitation in Korea.

Geomorphological Processes of Fluvial Terraces at the River Basins in the East Coast in the Southern Taebaek Mountain Range (태백산맥 남부 동해안 하천 유역의 하안단구 지형 형성)

  • Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • This study estimates geomorphological processes of fluvial terraces by uplifts and bedrock features, by the analyses of topography, distribution, formation age and incision rate of fluvial terraces using Gwang-cheon River in Uljin, Namdae-cheon River in Pyeonghae and Osip-cheon River in Yeongdeok located in the southern Taebaek Mountain Range. The tectonic and climatic terraces I in the upper reaches of Gwang-cheon River with an altitude from riverbed of 9~12m indicate the formation age of MIS 2 with a incision rate of 0.40m/ka. However, the tectonic and climatic terraces I in the upper reaches of Osip-cheon River with an altitude from riverbed of 7~10m show the formation age of MIS 3 with an incision rate of 0.10m/ka. These results suggest that the uplift rate in the Gwang-cheon River basin is likely to be higher than that in the Osip-cheon River basin. Unlike the lower reaches of Osip-cheon River, the thalassostatic terraces are not found in the lower reaches of Gwang-cheon River, because the basin has low maintainable ability of landforms in river valley due to high uplift rate and bedrock properties resistant to weathering and erosion. On the other hand, the lowest tectonic and climatic terraces in the study areas indicate different formative ages and the terraces during the cooling stage in interglacial as well as during interstadial are also found. Therefore, this study suggests that chronological method for fluvial terrace by the previous developmental model of climatic terrace should be reconsidered.

  • PDF