• Title/Summary/Keyword: climatic factors

Search Result 427, Processing Time 0.024 seconds

Inhomogeneities in Korean Climate Data (II): Due to the Change of the Computing Procedure of Daily Mean (기상청 기후자료의 균질성 문제 (II): 통계지침의 변경)

  • Ryoo, Sang-Boom;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.17-26
    • /
    • 2007
  • The station relocations, the replacement of instruments, and the change of a procedure for calculating derived climatic quantities from observations are well-known nonclimatic factors that seriously contaminate the worthwhile results in climate study. Prior to embarking on the climatological analysis, therefore, the quality and homogeneity of the utilized data sets should be properly evaluated with metadata. According to the metadata of the Korea Meteorological Administration (KMA), there have been plenty of changes in the procedure computing the daily mean values of temperature, humidity, etc, since 1904. For routine climatological work, it is customary to compute approximate daily mean values for individual days from values observed at fixed hours. In the KMA, fixed hours were totally 5 times changed: at four-hourly, four-hourly interval with additional 12 hour, eight-hourly, six-hourly, three-hourly intervals. In this paper, the homogeneity in the daily mean temperature dataset of the KMA was assessed with the consistency and efficiency of point estimators. We used the daily mean calculated from the 24 hourly readings as a potential true value. Approximate daily means computed from temperatures observed at different fixed hours have statistically different properties. So this inhomogeneity in KMA climate data should be kept in mind if you want to analysis secular aspects of Korea climate using this data set.

Thermal effect on dynamic performance of high-speed maglev train/guideway system

  • Zhang, Long;Huang, JingYu
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.459-473
    • /
    • 2018
  • Temperature fields and temperature deformations induced by time-varying solar radiation, shadow, and heat exchange are of great importance for the ride safety and quality of the maglev system. Accurate evaluations of their effects on the dynamic performances are necessary to avoid unexpected loss of service performance. This paper presents a numerical approach to determine temperature effects on the maglev train/guideway interaction system. Heat flux density and heat transfer coefficient of different components of a 25 m simply supported concrete guideway on Shanghai High-speed Maglev Commercial Operation Line is calculated, and an appropriate section mesh is used to consider the time-varying shadow on guideway surfaces. Based on the heat-stress coupled technology, temperature distributions and deformation fields of the guideway are then computed via Finite Element method. Combining guideway irregularities and thermal deformations as the external excitations, a numerical maglev train/guideway interaction model is proposed to analyze the temperature effect. The responses comparison including and excluding temperature effect indicates that the temperature deformation plays an important role in amplifying the response of a running maglev, and the parameter analysis results suggest that climatic and environmental factors significantly affect the temperature effects on the coupled maglev system.

Diagnosis of Office Occupant's Adaptation Level for Thermal Environment (사무실 근무자의 온열환경에 대한 적응수준 진단)

  • Kim, Yang-Weon
    • Korean Journal of Human Ecology
    • /
    • v.12 no.5
    • /
    • pp.747-754
    • /
    • 2003
  • The actual clothing conditions were surveyed to diagnose clothing condition of Korean female in the view point of the adaptation to the thermal environment according to seasonal changes. Then, clothing microclimate, physiological responses, and subjective sensation were investigated through wearing trials on human body in climatic chamber based on the results from the survey. Factors to evaluate validity of clothing condition were clothing weight, clothing microclimate, physiological response of human body, and subjective sensation. The results were as follows: 1. Clothing weight per body surface area of the season was $856g/m^{2}$, $439g/m^{2}$ in summer, $630g/m^{2}$ in fall, and $1184g/m^{2}$ in winter. Cold - resistance of Korean female in office was superior to Japanese, inferior to residents of rural areas of Korea, and similar to male in office. However, in heat - resistance, female in office was inferior to residents of rural areas of Korea. 2. In spring, fall, winter, clothing microclimate temperature was a little higher than that in summer. Therefore, it was not a desirable wearing condition even though the clothing microclimate was comfortable zone. 3. Mean skin temperature of female in office was including within the range of Winslow's comfortable zone, but the range of comfortable zone in mean skin temperature of female was more narrow than Winslow's. Thus, it has problem for female to adaptation to thermal environment.

  • PDF

A Physioclimatic Study on the Thermal Sensation in Korea (한국의 열감분포에 관한 생리 기후학적 연구 - 신유효온도를 중심으로 -)

  • 강철성
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.2
    • /
    • pp.129-140
    • /
    • 1997
  • The purpose of this paper is to analyze thermal sensation which is measured bv human physioclimatic reactions in Korea. Human physiological reactions to temperature and relative humidity are analyzed to produce a nomogram from which average human reactions to the climatic factors can be deduced. Thermal - indices for each regular stations in both South (1961-1990) and North Korea(1973-1994) are calculated based on monthly meteorological data. A generalized annual physioclimatic maps for each Annual Cumulative Thermal Index for the 52 stations are constructed to show how men tend to feel in various areas. Resuts of this study can be applied for evaluation of thermal environment in our daily activities, and for searching relevant sports training-sites.

  • PDF

Unsaturated Soil Mechanics for Slope Stability

  • Rahardjo, Harianto;Satyanaga, Alfrendo;Leong, Eng-Choon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.481-501
    • /
    • 2007
  • Excessive rainfalls due to climatic changes can trigger an increase in rainfall-induced slope failures that pose real threats to both lives and properties. Many high slopes in residual soils could stand at a steep angle, but failed during or after rainfall. Commonly, these slopes have a deep groundwater table and negative pore-water pressures in the unsaturated zone above the groundwater table contribute to the shear strength of soil and consequently to factor of safety of the slope. Stability assessment of slope under rainfall requires information on rate of rainwater infiltration in the unsaturated zone and the resulting changes in pore-water pressure and shear strength of soil. This paper describes the application of unsaturated soil mechanics principles and theories in the assessment of rainfall effect on stability of slope through proper characterization of soil properties, measurement of negative pore-water pressures, seepage and slope stability analyses involving unsaturated and saturated soils. Factors controlling the rate of changes in factor of safety during rainfall and a preventive method to minimize infiltration are highlighted in this paper.

  • PDF

Bilateral Skin Temperature Change of the Anterior Thigh Following Unilateral Isokinetic Exercise (등속성 운동 후 양측 대퇴부의 피부 온도 변화)

  • Kim, Seon-Mi;Oh, Young-Soo;Lee, Ji-Eun;Kwon, Hyuk-Cheol
    • Physical Therapy Korea
    • /
    • v.2 no.1
    • /
    • pp.14-20
    • /
    • 1995
  • The purpose of this study was to measure and compare the skin temperature over the exercised muscle and corresponding non-exercised muscle after unilateral isokinetic exercise using digital thermography. Thirty-two young healthy volunteers with no history of knee injury were tested. After isokinetic exercise at 60 degree per second angular velocity using the right leg in a climatic chamber at ambient temperature of $23-26^{\circ}C$, skin temperature of the anterior thigh was tested. After exercise, the skin temperature of both the right and left leg had fallen significantly. The skin temperature of the exercised leg fell less than that of the non-exercised leg. The fall in skin temperature after work was not due to increased evaporative cooling, but was the result of segmental vasoconstriction probably caused reflexly in the spinal cord by non-thermal afferents from exercising muscle or moving tissues. The effect of thermoregulatory vasodilation was reduced by reflex vasoconstriction caused by non-thermal factors such as catecholamine.

  • PDF

Regulating Natural Lighting and Ventilation of Residential Buildings in Hong Kong Policy Implications for High-rise, High-density Housing Environments in South Korea

  • Seo, Bokyong;Kim, Sung-Hwa;Lee, Jae-Hoon
    • Architectural research
    • /
    • v.16 no.3
    • /
    • pp.81-92
    • /
    • 2014
  • This study discusses the features of the lighting and ventilation regulations for residential buildings in Hong Kong. Given the compact built environment and public concerns about the environmental quality of housing, various lighting and ventilation regulations have been enacted in Hong Kong. The application of building regulations on the micro scale and incentive systems on the macro scale are present, and the governments' calls for more active participation of the private sector and use of the building environmental assessment tools were also noted. Unlike South Korea, however, Hong Kong was found to adopt more performance-based standards, consider the external factors of the lighting and ventilation conditions together with the indoor elements, and provide specific design guidelines. Notwithstanding the different climatic conditions and socio-political contexts of Hong Kong and South Korea, these findings provide some policy implications for the South Korean government in its efforts to achieve a healthy environment for high-rise, high-density housing. It is suggested that the South Korean government adopt more on-site measurement methods to reflect the environmental conditions accurately and broaden the scope and scale of the implementation of the lighting and ventilation regulations with more specific, practical planning and design guidelines.

Effects of Thermophysiological Responses by Trainning Wear Made from Cotton and Hygroscopically Treated Polyester (면과 친수 가공 폴리에스테르 소재로 된 트레이닝복의 인체 생리 효과)

  • Chung Hee-Ja;Chang Jee-Hae
    • Journal of the Korean Home Economics Association
    • /
    • v.37 no.12 s.142
    • /
    • pp.193-203
    • /
    • 1999
  • This study was executed to show influence of material and property of sportswear to physiological responses of body and comfort sensation and to supply basic research data about comfortable sportswear Trainning wear was manufactured with cotton(C) and hygroscopically treated polyester material (FP), and its properties of material were measured. Then rectal temperature, skin temperature, heart rate, weight loss, clothing microclimate and subjective sensation was estimated with study of wearing with these sportswear and examined the influence that it got to physiological responses of body and sensation. Health adult men were selected for subjects and executed at climatic chamber of temperature, $20\pm2^{\circ}C and humidity, $60\pm5%$ R.H. Conclusively sportswear of hygroscopically treated polyester is a favorable functional material. So far factor that affect to physiological comfort sensation has been explained mostly by moisture regain but in our experiment, it turned out that air permeability, water absorption velocity and dynamic oater absorption etc. were affecting factors. So according to this result, air permeability and moisture permeability should be considered with transmittance of temperature moisture for development of comfort material.

  • PDF

SPATIAL AND TEMPORAL INFLUENCES ON SOIL MOISTURE ESTIMATION

  • Kim, Gwang-seob
    • Water Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.31-44
    • /
    • 2002
  • The effect of diurnal cycle, intermittent visit of observation satellite, sensor installation, partial coverage of remote sensing, heterogeneity of soil properties and precipitation to the soil moisture estimation error were analyzed to present the global sampling strategy of soil moisture. Three models, the theoretical soil moisture model, WGR model proposed Waymire of at. (1984) to generate rainfall, and Turning Band Method to generate two dimensional soil porosity, active soil depth and loss coefficient field were used to construct sufficient two-dimensional soil moisture data based on different scenarios. The sampling error is dominated by sampling interval and design scheme. The effect of heterogeneity of soil properties and rainfall to sampling error is smaller than that of temporal gap and spatial gap. Selecting a small sampling interval can dramatically reduce the sampling error generated by other factors such as heterogeneity of rainfall, soil properties, topography, and climatic conditions. If the annual mean of coverage portion is about 90%, the effect of partial coverage to sampling error can be disregarded. The water retention capacity of fields is very important in the sampling error. The smaller the water retention capacity of the field (small soil porosity and thin active soil depth), the greater the sampling error. These results indicate that the sampling error is very sensitive to water retention capacity. Block random installation gets more accurate data than random installation of soil moisture gages. The Walnut Gulch soil moisture data show that the diurnal variation of soil moisture causes sampling error between 1 and 4 % in daily estimation.

  • PDF

Working Clothes and Working Environment of Workers at a Construction Site in Summer (여름철 건축현장 작업자의 작업복 착의 실태 및 작업 환경에 관한 연구)

  • Choi, Jeong-Wha;Park, Joon-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.11
    • /
    • pp.1520-1529
    • /
    • 2007
  • Workers on construction sites are exposed to multiple and varied threats. Of those, climatic factors such as high/low air temperatures and high/low humidity have a bad mental and physical health effect on workers. Especially, work in hot environment has a tendency to cause fatigue, reduce productivity and increase the incidence of accident. So, the purpose of this research was to understand working clothes and working environment of workers at a construction site in summer. The depth interview was performed by 45 workers of 4 different construction sites and the results were as follows. Workers wore average 4 items as clothing(upper, lower) and average 5 items as personal protective equipments(PPEs). They answered "head" is the hottest body area and must be protected during working. This means the necessity of development in safety hat. In addition, it should be developed working clothes and gaiters for alleviating heat stress and safety shoes for diminishing weight. It is expected that this research plays basic and important rolls to develop PPEs for reducing the heat stress of construction workers.