• Title/Summary/Keyword: climate map

검색결과 342건 처리시간 0.023초

Estimation of Design Wind Speed for Building Using Spatial Information Analysis (공간정보 분석을 통한 건축물의 설계풍속 산정)

  • Lee, Seong-Yun;Jo, Hyun-Jae;Lee, Hyun-Ki;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • 제23권3호
    • /
    • pp.79-89
    • /
    • 2015
  • Once the building is higher than certain size, the wind effect plays very important role in structure design. Moreover, this is more important in Korea because dangerous phenomena like typhoons are common. Rational wind resistant design is being magnified considering the global flow and climate changes. This research presented the estimation method of design wind load using spatial information analysis based on 1:5,000 digital map and performed comparative analysis with actual application cases. The wind velocity pressure exposure coefficient and topographic coefficient turned out to be more quantitative and rational when calculated through the proposed method. The time and cost are comparatively low when compared with traditional method which contribute to the economic and rational wind resistant design.

Development of Urban Flood Risk Maps for Strengthening Urban Planning Toward Disaster Prevention (재해예방형 도시계획 지원을 위한 도시침수 위험도 공간정보 개발)

  • Lee, Jongso;Lee, Sangeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제38권2호
    • /
    • pp.203-213
    • /
    • 2018
  • This study aims to propose the methods for urban flood risk maps which are useful in strengthening urban planning toward disaster prevention by climate change. Selecting the Gwangju city, Gyeonggi-do as study area, it analyzes urban flood at a RCP 8.5 scenario, and develops gridded information regarding risk components such as hazard, exposure, and vulnerability. It turns out that flooding would occur at a bend interval of the Mokhyun stream and also at the joint of the Gyungan and the Mokhyun streams, showing the similarity with the inundation trace map. In particular, the Songjeong dong is analyzed to be seriously exposed and to be highly vulnerable to flood inundation. With all results together, this study concludes that the proposed methods could be used as a basis for strengthening urban planning toward flood disaster prevention system.

Monitoring and Analyzing Water Area Variation of Lake Enriquillo, Dominican Republic by Integrating Multiple Endmember Spectral Mixture Analysis and MODIS Data

  • Kim, Sang Min;Yoon, Sang Hyun;Ju, Sungha;Heo, Joon
    • Ecology and Resilient Infrastructure
    • /
    • 제5권2호
    • /
    • pp.59-71
    • /
    • 2018
  • Lake Enriquillo, the largest lake in the Dominican Republic, recently has undergone unusual water area changes since 2001 thus it has been affected seriously by local community's livelihood. Earthquakes and seismic activities of Hispaniola plate tectonic coupled with human activities and climate change are addressed as factors causing the increasing. Thus, a thorough study on relationship between lake area changing, and those factors is needed urgently. To do so, this study applied MESMA on MODIS data to extract water area of Lake Enriquillo during 2001 and 2012 bimonthly, with six issues 12-year. MODIS provides high temporal resolution, and its coarse spatial resolution is compensated by MESMA fraction map. The increase in water area was $142.2km^2$, and the maximum lake area was $338.0km^2$ (in 2012). Water areas extracted by two Landsat scenes at two different times with three image classification approaches (ISODATA, MNDWI, and TCW) were used to assess accuracy of MODIS and MESMA results; it indicated that MESMA water areas are same as ISODATA's, less than 0.4%, while the highest difference is between MESMA and TCW, 2.4%. A number of previously formulated hypotheses of lake area change were investigated based on the outcomes of the present study, though none of them could fully explain the changes.

Thematic Map Construction of Erosion and Deposition in Rivers Using GIS-based DEM Comparison Technique

  • Han, Seung Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제34권2호
    • /
    • pp.153-159
    • /
    • 2016
  • Rivers refer to either natural or artificial structures whose primary functions are flood control and water conservation. Due to recent localized torrential downpours led by climate change, large amounts of eroded soil have been carried away, forming deposits downstream, which in turn degrades the capacity to fulfill these functions. To manage rivers more effectively, we need data on riverbed erosion and deposition. However, environmental factors make it challenging to take measurements in rivers, and data errors tend to prevent researchers from grasping the current state of erosions and deposits. In this context, the aim of the present study is to provide basic data required for river management. To this end, the author made annual measurements with a Real-time Kinematic-Global Positioning System (RTK-GPS) and a total station in Pats Cabin Canyon, Oregon, United States, and also prepared thematic maps of erosion and deposition thickness as well as water depth profiles based on a GIS spatial analysis. Furthermore, the author statistically analyzed the accuracy of three dimensional (3D) measurement points and only used the data that falls within two standard deviations (i.e. ±2σ). In addition, the author determined a threshold for a DEM of Difference (DoD) by installing measurement points in the rivers and taking measurements, and then estimated erosion and deposition thickness within a confidence interval of ±0.1m. Based on the results, the author established reliable data on river depth profiles and thematic maps of erosion and deposition thickness using pre-determined work flows. It is anticipated that the riverbed data can be utilized for effective river management.

Analysis of Land Use Pattern Change of Sub-Watershed -Focused on Moyar, India- (유역하류지역의 토지이용변화 분석 -인도 Moyar유역을 중심으로-)

  • Malini, Ponnusamy;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • 제18권2호
    • /
    • pp.87-92
    • /
    • 2010
  • Large pressure on the growing population has increased rapid change in the LULC (land use/land cover) patterns in the watershed area. Spatial distribution of LULC information and its changes are desirable for any effective planning, managing and monitoring activities. The aim of the study is to produce the 1,50,000 scaled LULC change map for the sub-watershed, Western Moyar, India using the multi-temporal satellite image dataset of IRS LISS III images for the year 1989, 1999, and 2002. About 9 classes are extracted using onscreen visual interpretation techniques for all the three years. The change detection analysis was performed using matrix method for period I (1989-1999) and period II (1999-2002). The study reveals that the changes noticed in period II (1999-2002) is comparatively more than period I (1989-1999), which is dynamic information to protect the sub-watershed area from the deterioration and paves the way to for the sustainable development.

A Study on the Analysis of Freezing Soil by Frost Groups and Frost Depth in Korea (우리나라 동결토의 토군별 분석과 동결심도에 관한 연구)

  • 정철호
    • Geotechnical Engineering
    • /
    • 제5권4호
    • /
    • pp.5-16
    • /
    • 1989
  • This paper statistically analyses the freezing soil by frost group and frost depth in Korea with data from soil testing in the Korea National Housing Corporation, the climate data provided by the Central Weather Office and the data on the frost depth from the National Construction Laboratory Institute. In this paper, freezing variable are analysed such as percentage finer than 0.02 m by weight, plasticity index, freezing index, water contents of soil and frost depth etc‥‥ The result of the analysis is as follows. 1) The frost depth of Korea depends on the properties of soil rather thank the characte fistic of area. 2) The distribution map of design freezing index in 57 cities is drawn up with the maxi- mum freezing index, during past 14 years, calculated by the average of the air temperature observed four times(03 : 00.09 00, 15 : 00, 21 : 00) a day. 3) By correcting the OLS line estimated from the relationship between freezing index and frost depth, a method of utlizing the line with the upper confidence limit of 99.9% int-distribution as predicted maximum frost depth is newly introduced.

  • PDF

Estimation of Aboveground Biomass Carbon Stock in Danyang Area using kNN Algorithm and Landsat TM Seasonal Satellite Images (kNN 알고리즘과 계절별 Landsat TM 위성영상을 이용한 단양군 지역의 지상부 바이오매스 탄소저장량 추정)

  • Jung, Jae-Hoon;Heo, Joon;Yoo, Su-Hong;Kim, Kyung-Min;Lee, Jung-Bin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • 제18권4호
    • /
    • pp.119-129
    • /
    • 2010
  • The joint use of remotely sensed data and field measurements has been widely used to estimate aboveground carbon stock in many countries. Recently, Korea Forest Research Institute has developed new carbon emission factors for kind of tree, thus more accurate estimate is possible. In this study, the aboveground carbon stock of Danyang area in South Korea was estimated using k-Nearest Neighbor(kNN) algorithm with the 5th National Forest Inventory(NFI) data. Considering the spectral response of forested area under the climate condition in Korea peninsular which has 4 distinct seasons, Landsat TM seasonal satellite images were collected. As a result, the estimated total carbon stock of Danyang area was ranged from 3542768.49tonC to 3329037.51tonC but seasonal trends were not found.

Automatic Change Detection of MODIS NDVI using Artificial Neural Networks (신경망을 이용한 MODIS NDVI의 자동화 변화탐지 기법)

  • Jung, Myung-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • 제49권2호
    • /
    • pp.83-89
    • /
    • 2012
  • Natural Vegetation cover, which is very important earth resource, has been significantly altered by humans in some manner. Since this has currently resulted in a significant effect on global climate, various studies on vegetation environment including forest have been performed and the results are utilized in policy decision making. Remotely sensed data can detect, identify and map vegetation cover change based on the analysis of spectral characteristics and thus are vigorously utilized for monitoring vegetation resources. Among various vegetation indices extracted from spectral reponses of remotely sensed data, NDVI is the most popular index which provides a measure of how much photosynthetically active vegetation is present in the scene. In this study, for change detection in vegetation cover, a Multi-layer Perceptron Network (MLPN) as a nonparametric approach has been designed and applied to MODIS/Aqua vegetation indices 16-day L3 global 250m SIN Grid(v005) (MYD13Q1) data. The feature vector for change detection is constructed with the direct NDVI diffenrence at a pixel as well as the differences in some subset of NDVI series data. The research covered 5 years (2006-20110) over Korean peninsular.

An Analysis of Relationship between Carbon Emission and Urban Spatial Patterns (도시패턴과 탄소배출량의 관계 분석)

  • Kim, In-Hyun;Oh, Kyu-Shik;Jung, Seung-Hyun
    • Spatial Information Research
    • /
    • 제19권1호
    • /
    • pp.61-72
    • /
    • 2011
  • Greenhouses gas emission due to usage of fossil fuel has been known as one of the main causes of global warming. Fundamentally, greenhouse gas is a by-product of economic activity. Since majority of economic activity happens in an urban setting, a countermeasure in an urban setting is needed. Therefore, an analysis of relationship between carbon dioxide emission and urban form will be investigated for urban planning and management in the future. The purpose of this study is to analyze the relationship between carbon dioxide emission and urban spatial patterns, and suggesting an urban form with low carbon dioxide emission. In order to achieve this, first theoretical analysis was carried out on urban spatial patterns related to physical size, usage rate, and activity level. Secondly, Seoul's dam on electricity, natural gas, local heating, petroleum, and water usage and mapping a carbon dioxide emission map. Thirdly, relationship between carbon dioxide emission and urban spatial patterns are analyzed and urban spatial patterns that affects energy usage in urban setting was elucidated, and elicited implications on future directions on urban planning based on our analyses above.

Ground surface changes detection using interferometric synthetic aperture radar

  • Foong, Loke Kok;Jamali, Ali;Lyu, Zongjie
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.277-290
    • /
    • 2020
  • Disasters, including earthquakes and landslides, have enormous economic and social losses besides their impact on environmental disruption. Iran, and particularly its Western part, is known as an earthquake susceptible area due to numerous strong ground motions. Studying ecological changes due to climate change can improve the public and expert sector's awareness and response to future disastrous events. Synthetic Aperture Radar (SAR) data and Interferometric Synthetic Aperture Radar (InSAR) technologies are appropriate tools for modeling and surface deformation modeling. This paper proposes an efficient approach to detect ground deformation changes using Sentinel-1A. The focal point of this research is to map the ground surface deformation modeling is presented using InSAR technology over Sarpol-e Zahab on 25th November 2018 as a study case. For surface deformation modeling and detection of the ground movement due to earthquake SARPROZ in MATLAB programming language is used and discussed. Results show that there is a general ground movement due to the Sarpol-e Zahab earthquake between -7 millimeter to +18 millimeter in the study area. This research verified previous researches on the advanced image analysis techniques employed for mapping ground movement, where InSAR provides a reliable tool for assisting engineers and the decision-maker in choosing proper policies in a time of disasters. Based on the result, 574 out of 682 damaged buildings and infrastructures due to the 2017 Sarpol-e Zahab earthquake have moved from -2 to +17 mm due to the 2018 earthquake with a magnitude of 6.3 Richter. Results show that mountainous areas have suffered land subsidence, where urban areas had land uplift.