• Title/Summary/Keyword: climate change vulnerability assessment

Search Result 142, Processing Time 0.021 seconds

Vulnerability Assessment of Forest Distribution by the Climate Change Scenarios (기후변화 시나리오에 따른 산림분포 취약성 평가)

  • Lee, Sangchul;Choi, Sungho;Lee, Woo-Kyun;Park, Taejin;Oh, Suhyun;Kim, Su-Na
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.256-265
    • /
    • 2011
  • This study was aiming at assessing the vulnerability of forest distribution by the A2 and B1 climate change scenarios of Intergovernmental Panel on Climate Change (IPCC). The vulnerability of forest distribution was assessed using its sensitivity and adaptation to climate change with the help of the simulations of Korean-specific forest distribution model, so-called the Thermal Analogy Group (TAG), and the Plant Functional Type (PFT) defined in the HyTAG (Hydrological and Thermal Analogy Groups) model. As a result, the vulnerable area occupied 30.78% and 2.81% of Korea in A2 and B1 scenario, respectively. When it comes to the administrative districts, Pusan in A2 and Daegu in B1 appeared the most vulnerable area. This study would be employed into preparation of adaptative measures for forest in future in terms of using climate change scenarios reflecting different future development conditions.

An Analysis on the Spatial Patterns of Heat Wave Vulnerable Areas and Adaptive Capacity Vulnerable Areas in Seoul (서울시 폭염 취약지역의 공간적 패턴 및 적응능력 취약지역 분석)

  • Choi, Ye Seul;Kim, Jae Won;Lim, Up
    • Journal of Korea Planning Association
    • /
    • v.53 no.7
    • /
    • pp.87-107
    • /
    • 2018
  • With more than 10 million inhabitants, in particular, Seoul, the capital of Korea, has already experienced a number of severe heat wave. To alleviate the potential impacts of heat wave and the vulnerability to heat wave, policy-makers have generally considered the option of heat wave strategies containing adaptation elements. From the perspective of sustainable planning for adaptation to heat wave, the objective of this study is to identify the elements of vulnerability and assess heat wave-vulnerability at the dong level. This study also performs an exploratory investigation of the spatial pattern of vulnerable areas in Seoul to heat wave by applying exploratory spatial data analysis. Then this study attempts to select areas with the relatively highest and lowest level of adaptive capacity to heat wave based on an framework of climate change vulnerability assessment. In our analysis, the adaptive capacity is the relatively highest for Seongsan-2-dong in Mapo and the relatively lowest for Changsin-3-dong in Jongno. This study sheds additional light on the spatial patterns of heat wave-vulnerability and the relationship between adaptive capacity and heat wave.

Development and Application of CCGIS for the Estimation of Vulnerability Index over Korea (한반도 기후변화 취약성 지수 산정을 위한 CCGIS의 개발 및 활용)

  • Kim, Cheol-Hee;Song, Chang-Keun;Hong, You deok;Yu, Jeong Ah;Ryu, Seong-Hyun;Yim, Gwang-Young
    • Journal of Climate Change Research
    • /
    • v.3 no.1
    • /
    • pp.13-24
    • /
    • 2012
  • CCGIS (Climate Change Adaptation Toolkit based on GIS) was developed to use as a tool for the climate change assessment and any relevant tasks involving climate change adaptation policy over Korean peninsula. The main objective of CCGIS is to facilitate an efficient and relevant information for the estimation of climate change vulnerability index by providing key information in the climate change adaptation process. In particular, the atmospheric modeling system implemented in CCGIS, which is composed of climate and meteorological numerical model and the atmospheric environmental models, were used as a tool to generate the climate and environmental IPCC SRES (A2, B1, A1B, A1T, A1FI, and A1 scenarios) climate data for the year of 2000, 2020, 2050, and 2100. This article introduces the components of CCGIS and describes its application to the Korean peninsula. Some examples of the CCGIS and its use for both climate change adaptation and estimation of vulnerability index applied to Korean provinces are presented and discussed here.

Assessment of Landslide on Climate Change using GIS (GIS를 이용한 기후변화에 따른 산사태 취약성 평가)

  • Xu, Zhen;Kwak, Hanbin;Lee, Woo-Kyun;Park, Taejin;Kwon, Tae-Hyub;Park, Sunmin
    • Journal of Climate Change Research
    • /
    • v.2 no.1
    • /
    • pp.43-54
    • /
    • 2011
  • Recently, due to severe rainfall by the global climate change, natural disasters such as landslide had also been increased rapidly all over the world. Therefore, it has been very necessary to assess vulnerability of landslide and prepare adaptation measures to future climate change. In this study, we employed sensitivity, exposure and adaptative capacity as criteria for assessing the vulnerability of landslide due to climate change. Spatial database for the criteria was constructed using GIS technology. And vulnerability maps on the entire Korea of past and future were made based on the database. As a result, highly vulnerable area for landslide was detected in most area of Gangwon-do, the east of Gyeonggi-do, and southeast of Jeollanam-do, and the southwest of Gyeongsangnam-do. The result of landslide vulnerability depends on time shows that degree of very low class and low class were decreased and degree of moderate, high, and very high were increase from past to the future. Especially, these three classes above low class were significantly increased in the result of far future.

Health Vulnerability Assessment for PM10 in Busan (부산지역 미세먼지에 대한 건강 취약성 평가)

  • Lee, Won-Jung;Hwang, Mi-Kyoung;Kim, Yoo-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.5
    • /
    • pp.355-366
    • /
    • 2014
  • Objectives: This study seeks to evaluate the vulnerability assessment of the human health sector for $PM_{10}$, which is reflected in the regional characteristics and related disease mortality rates for $PM_{10}$ in Busan over the period of 2006-2010. Methods: According to the vulnerability concept suggested by the Intergovernmental Panel on Climate Change (IPCC), vulnerability to $PM_{10}$ is comprised of the categories of exposure, sensitivity, and adaptive capacity. The indexes of the exposure and sensitivity categories indicate positive effects, while the adaptive capacity index indicates a negative effect on vulnerability to $PM_{10}$. Variables of each category were standardized by the rescaling method, and each regional relative vulnerability was computed through the vulnerability index calculation formula. Results: The regions with a high exposure index are Jung-Gu (transportation region) and Saha-Gu (industrial region). Major factors determining the exposure index are the $PM_{10}$ concentration, days of $PM_{10}{\geq}50$, ${\mu}g/m^3$, and $PM_{10}$ emissions. The regions that show a high sensitivity index are urban and rural regions; these commonly have a high mortality rate for related disease and vulnerable populations. The regions that have a high adaptive capacity index are Jung-Gu, Gangseo-Gu, and Busanjin-Gu, all of which have a high level of economic/welfare/health care factors. The high-vulnerability synthesis of the exposure, sensitivity, and adaptive capacity indexes show that Dong-Gu and Seo-Gu have a risk for $PM_{10}$ potential effects and a low adaptive capacity. Conclusions: This study presents the vulnerability index to $PM_{10}$ through a relative comparison using quantitative evaluation to draw regional priorities. Therefore, it provides basic data to reflect environmental health influences in favor of an adaptive policy limiting damage to human health caused by vulnerability to $PM_{10}$.

Ecosystem Vulnerability Assessment of Local Government Due to Climate Change (기후변화에 따른 지자체의 생태계 취약성 평가)

  • Kong, Woo-seok;Lee, Slegee;Park, Heena;Yu, Jeong Ah
    • Journal of Climate Change Research
    • /
    • v.3 no.1
    • /
    • pp.51-69
    • /
    • 2012
  • This work aims to propose a vulnerability assessment methodology of ecosystem at present time, and an to suggest an adaptation strategy of ecosystem in the future for local government, in the fields of plant, animal and conservation area, which would occurred due to climate change. Vulnerability assessment in ecosystem includes first, tree growth and distribution part, mainly for conifers, secondly, insect part for pest and bee, and thirdly conservation area management part, especially at the national parks. To evaluate the degree of vulnerability of each substitute variables, such as exposure of climatic element, sensitivity, and adaptation ability, are respectively selected. Vulnerabilities of conifer growth and distribution, pest and bee, and national park management seem to be strongly influenced by the exposure of climatic element than other factors, such as sensitivity and adaptation ability. With time regional gaps of ecosystem vulnerability are expected to be greater in both conifers growth and distribution, and national park management, but reduced in pest and bee in 2100 in comparison with present time.

Development of a decision scaling framework for drought vulnerability assessment of dam operation under climate change (Decision Scaling 기반 댐 운영 기후변화 가뭄 취약성 평가)

  • Kim, Jiheun;Seo, Seung Beom;Cho, Jaepil
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.273-284
    • /
    • 2023
  • Water supply is continuously suffering from frequent droughts under climate change, and such extreme events are expected to become more frequent due to climate change. In this study, the decision scaling method was introduced to evaluate the drought vulnerability under future climate change in a wider range. As a result, the water supply reliability of the Boryeong Dam ranged from 95.80% to 98.13% to the condition of the aqueduct which was constructed at the Boryeong Dam. Furthermore, the Boryeong Dam was discovered to be vulnerable under climate change scenarios. Hence, genetic algorithm-based hedging rules were developed to evaluate the reduction effect of drought vulnerability. Moreover, three demand scenarios (high, standard, and low demand) were also considered to reflect the future socio-economic change in the Boryeong Dam. By analyzing quantitative reliability and the probability of extreme drought occurrence under 5% of the water storage rate, all hedging rules demonstrated that they were superior in preparing for extreme drought under low-demand scenarios.

Distribution of High Mountain Plants and Species Vulnerability Against Climate Change (한반도 주요 산정의 식물종 분포와 기후변화 취약종)

  • Kong, Woo-Seok;Kim, Kunok;Lee, Slegee;Park, Heena;Cho, Soo-Hyun
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.119-136
    • /
    • 2014
  • This work aims to select the potentially vulnerable plant species against climate change at alpine and subalpine belts of Mts. Sorak, Jiri, and Halla, from central, southern, southern insular high mountains of the Korean Peninsula, respectively. The selection of global warming related vulnerable plants were performed by adapting various criteria, such as flora, endemicity, rarity, floristically specific and valuable species, species composition at mountain summits, horizontal and vertical ranges of individual species, and their distributional pattern in the Korean Peninsula. Line and quadrat field surveys along the major trails from all directions at height above 1,500 meters above sea level of Mts, Sorak, Jiri and Halla were conducted each year during spring, summer, and autumn from 2010 to 2011. Based upon above mentioned eight criteria, high level of climate change related potentially vulnerable arboral plants, such as Rhododendron aureum, Taxus caespitosa, Pinus pumila, Oplopanax elatus, Vaccinium uliginosum, and Thuja koraiensis are noticed from at subalpine belt of Mt. Sorak. Species of Abies koreana, Rhododendron tschonoskii, Oplopanax elatus, Taxus cuspidata, Picea jezoensis, and Juniperus chinensis var. sargentii belong to climate change concerned vulnerable species at subalpine belt of Mt. Jiri. High level of climate change related species vulnerability is found at alpine and subalpine belts of Mt. Halla from Diapensia lapponica var. obovata, Salix blinii, Empetrum nigrum var. japonicum, Vaccinium uliginosum, Juniperus chinensis var. sargentii, Taxus cuspidata, Rhamnus taquetii, Abies koreana, Hugeria japonica, Prunus buergeriana, and Berberis amurensis var. quelpartensis. Countermeasures to save the global warming vulnerable plants in situ are required.

Vulnerability Assessment of Water Supply in Agricultural Reservoir Utilizing Probability Distribution and Reliability Analysis Methods (농업용 저수지 공급량과 수요량의 확률분포 및 신뢰성 해석 기법을 활용한 물 공급 취약성 평가)

  • Nam, Won-Ho;Kim, Tae-Gon;Choi, Jin-Yong;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.37-46
    • /
    • 2012
  • The change of rainfall pattern and hydrologic factors due to climate change increases the occurrence probability of agricultural reservoir water shortage. Water supply assessment of reservoir is usually performed current reservoir level compared to historical water levels or the simulation of reservoir operation based on the water budget analysis. Since each reservoir has the native property for watershed, irrigation district and irrigation water requirement, it is necessary to improve the assessment methods of agricultural reservoir water capability about water resources system. This study proposed a practical methods that water supply vulnerability assessment for an agricultural reservoir based on a concept of probabilistic reliability. The vulnerability assessment of water supply is calculated from probability distribution of water demand condition and water supply condition that influences on water resources management and reservoir operations. The water supply vulnerability indices are estimated to evaluate the performance of water supply on agricultural reservoir system, and thus it is recommended a more objective method to evaluate water supply reliability.

Water Management Vulnerability Assessment Considering Climate Change in Korea (기후변화에 따른 우리나라 물 관리의 취약성 평가)

  • Kim, Yeon-Kyu;Yoo, Jeong-A;Chung, Eun-Sung
    • Journal of Climate Change Research
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • In order to use as basic data of adaptation, this study focused on a 'Water management vulnerability estimation' in Korea. Vulnerability is estimated dividing into flood mitigation and water resource management. Temporal resolution is 2000 year and the future 2020 year, 2050 year, 2100 year via A1B scenario. Time series data was normalized. Then weight that is gotten through delphi investigation was multiplied. Vulnerability is calculated through this process. In flood mitigation vulnerability, it was estimated to adaptation ability affect relatively biggest influence. In future, some area of Gangwon-do was analyzed that the flood mitigation vulnerability increases. In water resource management, it was estimated to climate exposure affect relatively biggest influence. At 2020 yr, there is a trend toward increased in the Chungcheongbuk-do and DaeJeon, Daegu, some area of Gyeongsangnamdo. Because this study evaluate relative vulnerability of whole country and analyzed spatial distribution, when local government establishes climate change adaptation details enforcement countermeasure, this study can give help to grasp whether should invest more in some field.