• Title/Summary/Keyword: climate change impacts

Search Result 513, Processing Time 0.03 seconds

Sea Level Rise at the Southwestern Coast of Korean Peninsula

  • Oh Nam-Sun;Kang Ju-Whan;Moon Seung-Rok
    • Journal of Navigation and Port Research
    • /
    • v.29 no.4
    • /
    • pp.327-333
    • /
    • 2005
  • Sea level (MSL, MHWL, or MLWL) change has been main concern to scientists and engineers and it can be primarily due to both change of climate and vertical movement of land. This paper reports the intensive analysis of the sea level changes and broad discussion of the future at the southwestern coast of Korean peninsula. Regression analysis was conducted to investigate general tendency and periodicity of the sea levels at the six different study sites such as Gunsan-I(inner port), Gunsan-O(outer port), Mokpo, Yeosu, Heuksan and Jeju and the results were compared with global values. Besides the changes of sea levels due to global warming, the influence of the man-made structure such as seadike and seawall was attempted to quantify using the minimization of the Root Mean Square(RMS) error. The results show that it is a general tendency that the values of mean sea level rise at the southwestern coast of Korean Peninsula, especially at Gunsan-I and Jeju, are somewhat larger compared to global average values. There is also some evidence that tidal amplifications are found just after construction of man-made structure at Gunsan-I and Mokpo. However, both sites show different mechanism in relation to tidal choking, tidal flat and river discharge. The impact due to construction of man-made structure is considerably larger at Mokpo site, while the impacts due to man-made structure and the effect of sea level rise are relatively identical at Gunsan-I site. This study is expected to provide some intuition to future design.

Satellite-based Evaporative Stress Index (ESI) as an Indicator of Agricultural Drought in North Korea (Evaporative Stress Index (ESI)를 활용한 북한의 위성영상기반 농업가뭄 평가)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Hong, Eun-Mi;Kim, Dae-Eui;Svoboda, Mark D.;Tadesse, Tsegaye;Wardlow, Brian D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • North Korea has frequently suffered from extreme agricultural crop droughts, which have led to food shortages, according to the Food and Agriculture Organization (FAO). The increasing frequency of extreme droughts, due to global warming and climate change, has increased the importance of enhancing the national capacity for drought management. Historically, a meteorological drought index based on data collected from weather stations has been widely used. But it has limitations in terms of the distribution of weather stations and the spatial pattern of drought impacts. Satellite-based data can be obtained with the same accuracy and at regular intervals, and is useful for long-term change analysis and environmental monitoring and wide area access in time and space. The Evaporative Stress Index (ESI), a satellite-based drought index using the ratio of potential and actual evaporation, is being used to detect drought response as a index of the droughts occurring rapidly over short periods of time. It is more accurate and provides faster analysis of drought conditions compared to the Standardized Precipitation Index (SPI), and the Palmer Drought Severity Index (PDSI). In this study, we analyze drought events during 2015-2017 in North Korea using the ESI satellite-based drought index to determine drought response by comparing with it with the SPI and SPEI drought indices.

A Review on Environmental Impact Assessment and Policy Utilization through the Establishment of Ecological Outlook and Evaluation System (자연생태 전망평가체계 마련을 통한 환경영향평가 및 정책 활용방안 고찰)

  • Who-Seung Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.363-376
    • /
    • 2023
  • As the risk of biodiversity reduction and extinction becomes serious due to climate change and indiscriminate development, the importance of conservation of the natural environment and ecosystem is increasing. In this situation, Ireviewed that overseas cases of the ecological outlook and evaluation system aimed at providing information on natural resources and ecosystem change. As a results, other countries showed that various research institutes have been carrying on field surveys by classification group, but it was different from us that the investigated data are collected and managed in an integrated manner and repeatedly provided within a short period of time. In addition, it was analyzed that it was highly utilized in policy and environmental impact assessment by providing evaluation-based prediction and outlook information along with basic survey data. Based on this, the limitations of information use in our wildlife surveys and environmental impacts assessments were analyzed, and the estabilishment of a ecology outlook and evaluation system and policy support measures were considered. In addition, based on the proposed outlook and evaluation system preparation plan, a policy direction that can be effectively used in domestic natural ecosystem policies was proposed.

Analysis on Price Driver of Spread and Different Patterns of EUA and sCER (탄소배출권 EUA와 sCER의 가격 차이 패턴 및 스프레드(Spread) 결정 요인 분석)

  • Park, Soonchul;Cho, Yongsung
    • Environmental and Resource Economics Review
    • /
    • v.22 no.4
    • /
    • pp.759-784
    • /
    • 2013
  • Participants can use the allowances and offsets for implementing the compliance in the Emissions Trading Scheme(ETS). There are alternative commodities which are different prices it gives the opportunities to reduce the compliance costs and get the arbitrage. This study analyzes the price driver of spread which is the difference between EUA and sCER using AR-GARCH model, EUA and CER during the Phase 2 in EU ETS. The results show that there are common elements which impacts the EUA and sCER and also different elements between them. EUA and sCER get the effects from energy price and economic criteria such as coal price and financial crisis as common elements. However them get the effects from electric price, policy criteria such as restricted CERs and difference price between EUA and ERU price as different elements. The results shows that spread will be widen if energy price increase, especially oil and electric price give more impacts the spreads. This study has the means that it explains the reason why the spreads will broaden sharply in 2012. And it also suggests the price driver of spread during the whole period of Phase 2. In addition, this study shows that political aspects maybe become the main criteria of price change with structural elements shch as energy price in Korea ETS which starts in 2015.

Climate Change Impacts in Natural Resources and Livestock in Mongolia Climate

  • Batima, P.;Natsagdorj, L.;Bayarbaatar, L..;Bolortsetseg, B.;Natsagsuren, N.;Erdenetsetseg, B.
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.103-104
    • /
    • 2004
  • This paper discuss some results of observed changes of meteorological elements as temperature, precipitation and some extreme indexes in Mongolia. Mongolia is one of the largest landlocked countries in the world. The climate is characterized by a long lasting cold winter, dry and hot summer, low precipitation, high temperature fluctuation and relatively high number of sunny days per year. During last 60 years the annual mean air temperature has risen $1.66^{\circ}C$. Intensive warming of > $2^{\circ}C$ was observed at higher altitudes of high mountains when warming of < $1^{\circ}C$ was observed the Domod steppe and the Gobi Desert. Heat Wave Duration have statistically significant risen trend with increaded number of days by 8-18 at significance level of 95-99.9% depending on geography and Cold Wave Duration have shortened by 13.3 days significance level of 95-99%. In general, by the amount of precipitation, Mongolia falls in semi-arid and arid region. It is 300-350 mm in the high mountain regions while it is only 50-150 mm in Gobi Desert regions. The changes of annual precipitation have very localized character i.e.decreasing at one site and increasing at a sit nearby. Annual precipitation decreased by 30-90 mm in the northern-central region and increased by 2-60 mm in the western and eastern region. The magnitude of alteration changes in precipitation regardless increasing or decreasing is 5-25%. A trends, significant at the level of 90%, found where changes are more than 40 mm or more than 15% of annual mean value. Moreover, the soil moisture resources was decreased in the last 40 years. Specially, moisture contents of the top soil have decreased 2 times(N. Natsagsuren, 2002). Months of June and July in Mongolia is the year that moisture is not inhibiting vegetation growth. Unfortunately, its also found that moisture in this time tends to decrease. Increased temperature, decreased precipitation and soil moisture are most likely resulted in occurences of more intense drought spells that have taken place during the recent years. Intimately, these changes have considerable impact on livestock in Mongolia.

  • PDF

A Study on the Economic Benefit of Urban Parking Lot Tree Shading -In the Case of University of California Davis Parking Lot- (도시 주차장내 수목그늘의 경제적 이익 연구 -미국 캘리포니아 데이비스 대학 주차장을 사례로-)

  • Jang Dong-Su;McPherson E. G.
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.6 s.113
    • /
    • pp.98-108
    • /
    • 2006
  • The climate of urban area is an unstable type with considerable seasonal variation in precipitation wind speed, and temperature and it grows worse. Besides, ozone is a serious air pollutant in most of large cities. So worldwide, some of large cities are investing in forestry options to offset their climate problems, but lack of information has hindered comparisons of urban un cost effectiveness to other options. This research intends to study the economic benefits of tree shading of 19 parking lots in UCD campus. The economic benefits of tree shading are air conditioning savings, air quality, stormwater run-off, and other benefits. Especially, this study focuses how much the economic benefit of parking lot shading has been increased from 1995 to 2003 year by aerophoto. Some data on dimensions of parking lots and the number, size, tree species, and location of trees around each parking lot was inventoried. Two aerophotos(1995,2003) were used in order to analyze the increasement of tree canopy in 19 parking lots for 8 years. However, increasing coverage of trees and managing them for healthy growth would not be sufficient for avoiding adverse impacts by future climate change. Additional measures should be followed such as an increase of energy use efficiency and development of substitute energy. For example, coverage of trees help to save cooling energy by blocking solar radiation reaching parking cars and building structures through shading, and creating cool micro-climates through evapotranspiration. They also reduce heating demand by decreasing air infiltration and heat conduction out of the interior of buildings. Proper arrangement of vegetation over the parking lots can reduce cooling and heating costs. So proper planting design around hard space paving including species selection and location can significantly save cooling and heating energy. And a reduction in car and building's heating and cooling costs results in the reduction in energy demand which causes to emissions of air pollutants. Total increased tree canopy from 1995 to 2003 is $8,470.45m^2$ and the economic benefits is US$ 5,282.10. The economic benefit of one tree has been US$ 7.21 for 8 years. And an annually increased benefit is US$ 0.9 per a tree. If this kind of study is applied to studying the economic benefits of tree canopy in parking lots of Korea, it could result in guidelines of tree planting of parking lots. Because the trees selected for planting in parking lots were not suitable for an environment, the guidelines should contain a recommended list of trees. The guidelines should propose the shading percentage of parking lot when we plan a parking lot and contain the maintenance of trees in order to maximize the economic benefits of tree canopy.

Analysis of the Impact of Key Design Elements for the EU-ETS Phase 4 on the K-ETS in the Future (EU ETS 4기의 주요 제도 설계가 향후 국내 배출권거래제 운영에 미칠 영향 분석)

  • Son, Insung;Kim, Dong Koo
    • Environmental and Resource Economics Review
    • /
    • v.30 no.1
    • /
    • pp.129-167
    • /
    • 2021
  • The emission trading system is an essential policy for reducing greenhouse gas emissions and converting low-carbon society. EU ETS is a good benchmark that is ahead of Korea's emission trading system in terms of operating period and design know-how. Therefore, this study focused on the key design elements of EU ETS phase 4 such as total emission allowances issued (Cap), free allocation method, carbon leakage list, market stability reserve, and innovation supporting system. In addition, we analyzed the impact of key design elements and their changes during EU ETS Phase 1 to 4 on the design and operation of Korea emission trading system in the future. First of all, the expected impact on the design of Korea emission trading system is to increase three demands: preparing benchmark renewal plans, establishing criteria for selecting free allocation industries that reflect domestic industrial structure and characteristics and introducing two-stage evaluations for free allocation industries, and preparing specific plan to support innovation and industries using allowance auction revenues. The next three impacts on the operation of Korea emission trading system are the increased needs for objective and in-depth impact assessment of plan and amendments, provision of system stability and response opportunities by quickly confirming plan and amendments prior to the implementation, and coordination of the emission trading system governance and stakeholder participation encouragement.

Evaluation of Soil Organic Carbon of Upland Soil According to Fertilization and Agricultural Management Using DNDC Model (DNDC 모형을 이용한 시비와 영농관리에 따른 밭포장의 토양유기탄소 변동 평가)

  • Lee, Kyoungsook;Yoon, Kwangsik;Choi, Dongho;Jung, Jaewoon;Choi, Woojung;Lim, Sangsun
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • To mitigate the impacts of climate change on agricultural ecosystems, development of agricultural management for enhanced soil carbon sequestration is required. In this study, the effects of fertilizer types (chemical fertilizer and manure compost), cropping systems, and crop residue management on SOC(Soil Organic Carbon) sequestration were investigated. Summer corn and winter barley were cultivated on experimental plots under natural rainfall conditions for two years with chemical fertilizer and manure compost. Soil samples were collected conducted and analyzed for SOC for soil. To estimate long-term variation patterns of SOC, DNDC was run with the experimental data and the weather input parameters from 1981 to 2010. DNDC simulation demonstrated SOC reduction by chemical fertilizer treatment unless plant residues are returned; whereas compost treatments increased SOC under the same conditions and SOC increment was proportional to compost application rate. In addition, SOC further increased under corn-barley cropping system over single corn cropping due to more compost application. Regardless of nutrient input type, residue return increased SOC; however, the magnitude of SOC increase by residue return was lower than by compost application.

Composite model for seawater intrusion in groundwater and soil salinization due to sea level rise (해수면 상승으로 인한 지하수 해수침투 및 토양 염류화 합성 평가모델)

  • Jung, Euntae;Park, Namsik;Cho, Kwangwoo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.387-395
    • /
    • 2017
  • Sea level rise, accompanied by climate change, is expected to exacerbate seawater intrusion in the coastal groundwater system. As the salinity of saturated groundwater increases, salinity can increase even in the unsaturated soil above the groundwater surface, which may cause crop damage in the agricultural land. The other adverse impact of sea level rise is reduced unsaturated soil thicknesses. In this study, a composite model to assess impacts of sea level rise in coastal agricultural land is proposed. The composite model is based on the combined applications of a three dimensional model for simulating saltwater intrusion into the groundwater and a vertical one dimensional model for simulating unsaturated zone flow and transport. The water level and salinity distribution of groundwater are calculated using the three dimensional seawater intrusion model. At some uppermost nodes, where salinity are higher than the reference value, of the 3D mesh one dimensional unsaturated zone modeling is conducted along the soil layer between the ground water surface and the ground surface. A particular location is judged salinized when the concentration at the root-zone depth exceeds the tolerable salinity for ordinary crops. The developed model is applied to a hypothetical agricultural reclamation land. IPCC RCP 4.5 and 8.5 scenarios were used as sea level rise data. Results are presented for 2050 and 2100. As a result of the study, it is predicted that by 2100 in the climate change scenario RCP 8.5, there will be 7.8% increase in groundwater saltwater-intruded area, 6.0% increase of salinized soil area, and 1.6% in increase in water-logging area.

Seasonal Change in C3/C4 Mixed Vegetation Populations over Paddy Levees in South Korea (남한의 논둑에 발달한 C3/C4 혼생식생의 계절변화)

  • Kim, Myung-Hyun;Oh, Young-Ju;Kim, Miran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.196-206
    • /
    • 2012
  • Studies of seasonal changes in $C_3/C_4$ mixed communities are rare, particularly in Asian summer monsoon climate zones. In our present study, seasonal changes in the profile and coverage of $C_3$ and $C_4$ plants were investigated in 2009 in Haenam, Yeongdong and Cheorwon regions of South Korea (all at different latitudes). The aim was to estimate the impacts of temperature and sunshine duration on species composition and transition timing of the $C_3$ and $C_4$ plants. From our results, the number of $C_3$ plants was found to increase from early spring to mid-May, and then decrease again until September in the Haenam and Yeongdong regions, but continuously increase from early spring to September in the Cheorwon region under relatively low summer temperatures. On the other hand, the number of $C_4$ plants increased from June or July to September in all three regions. These seasonal changes in species number and ratio have a direct impact upon species diversity which is highest when there are no dominant species. The relative coverage and relative summed dominance ratio (SDR') of the $C_3$ plants decreased from spring to autumn, but increased for the $C_4$ plants during this time in an exponential fashion with increasing accumulated temperature and sunshine duration. The transition timing from $C_3$ to $C_4$ plants occurred when the sum of sunshine duration for the days with daily mean temperature above $5^{\circ}C$ was 1017 hrs for the SDR'.