• Title/Summary/Keyword: climate change impacts

Search Result 524, Processing Time 0.024 seconds

On the Change of Flood and Drought Occurrence Frequency due to Global Warming : 1. Change of Daily Rainfall Depth Distribution due to Different Monthly/Yearly Rainfall Depth (지구온난화에 따른 홍수 및 가뭄 발생빈도의 변화와 관련하여 : 1. 연/월강수량의 변화에 따른 일강수량 분포의 변화분석)

  • Yun, Yong-Nam;Yu, Cheon-Sang;Lee, Jae-Su;An, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.617-625
    • /
    • 1999
  • Global warming has begun since the industrial revolution and it is getting worse recently. Even though the increase of greenhouse gases such as $CO_2$ is thought to be the main cause for global warming, its impact on global climate has not been revealed clearly in rather quantitative manners. However, researches using General Circulation Models(GCMs) has shown the accumulation of greenhouse gases increases the global mean temperature, which in turn impacts on the global water circulation pattern. This changes in global water circulation pattern result in abnormal and more frequent meteorological events such as severe floods and droughts, generally more severe than the normal ones, which are now common around the world and is referred as a indirect proof of global warming. Korean peninsula also cannot be an exception and have had several extremes recently. The main objective of this research is to analyze the impact of global warming on the change of flood and drought frequency. Based on the assumption that now is a point in a continuously changing climate due to global warming, we analyzed the observed daily rainfall data to find out how the increase of annual rainfall amount affects the distribution of daily rainfall. Obviously, the more the annual rainfall depth, the more frequency of much daily rainfall, and vice versa. However, the analysis of the 17 points data of Keum river basin in Korea shows that especially the number of days of under 10mm or over 50mm daily rainfall depth is highly correlated with the amount of annual rainfall depth, not the number of dry days with their correlation coefficients quite high around 0.8 to 0.9.

  • PDF

Estimation of Rice Cultivation Impacts on Water Environment with Environmental Characteristics and Agricultural Practices by Nitrogen Balances (질소수지에 의한 환경특성과 영농방법별 벼농사의 수질영향 평가)

  • Roh, Kee-An;Kim, Min-Kyeong;Ko, Byong-Gu;Kim, Gun-Yeob;Shim, Kyo-Moon;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.439-446
    • /
    • 2009
  • Nitrogen balance in the regional scale which was calculated the difference between nitrogen input and output was estimated to assess the impact of rice cultivation on water environment. Nitrogen balances in Gyeonggi province, where nitrogen concentration in irrigation water was high and in Chungnam province, where nitrogen absorbtion by rice was high, were -5.4 and -8.3 kg $-8.3kg\;ha^{-1}\;yr^{-1}$, respectively. Nitrogen balances of paddy field in Gangwon province, where nitrogen output was small and irrigation water was clean, and in Gyeongnam province, where organic matter content of soil was high and rice yield was low, were 4.9 and $14.0kg\;ha^{-1}\;yr^{-1}$, respectively. Average nitrogen balance and total nitrogen absorption of paddy field in Korea were estimated to $-0.3kg\;ha^{-1}\;yr^{-1}$ and $-3,315Mg\;yr^{-1}$, respectively. When the nitrogen concentration in irrigation water was increased by $1mg \;L^{-1}$, nitrogen balance of rice paddy changed by $-2.91kg\;ha^{-1}\;yr^{-1}$. Also, when nitrogen fertilizer applied was decreased from 110 to $90kg\;ha^{-1}$ and the same harvest was maintained, the nitrogen absorption by rice paddy from irrigation water was estimated to increase by 10,600 Mg per year in Korea. However, in cases, the harvest was reduced to either 90% or 85%, nitrogen balances were changed from -11.7 to -2.3 and $2.4kg\;ha^{-1}$, respectively. These results suggest that the reduction of nitrogen fertilizer use may not always lead to a negative nitrogen balance and sustainable agriculture can achieve by not cutting down the use of fertilizer only but by reduction of fertilizer application concurrently by maintenance of harvest and by utilization of environmental characteristics such as nutrient contents in irrigation water and soils.

Photosynthesis and Growth of Southern-type Garlic (Allium sativum L.) in Response to Elevated Temperatures in a Temperature Gradient Tunnel (온도구배터널 내 상승온도에 의한 난지형 마늘(Allium sativum L.)의 광합성 및 생육 특성의 변화)

  • Oh, Seo-Young;Moon, Kyung Hwan;Song, Eun Young;Shin, Minji;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.250-260
    • /
    • 2019
  • This study assessed clove germination, shoot growth, photosynthesis and bulb development of southern-type garlic (Allium sativum L.) in a temperature gradient tunnel (TGT), to examine the impacts of increases in temperature on the growth of garlic and find a way to minimize them. The temperatures in the middle and outlet of the TGT were 3.2℃ and 5.8℃ higher, respectively, than the ambient temperature at the tunnel inlet. The germination of garlic cloves was late at temperatures of ambient+3℃ (in the middle of the TGT) and ambient+6℃ (at the outlet) than at ambient temperature (at the inlet). However, bolting and the timing of maximum leaf number per plant were faster at ambient+3℃ or +6℃ than at ambient temperature. Shoot growth was generally greater at ambient temperature. Bulb growth did not significantly differ according to cultivation temperatures, but fresh and dry weights were slightly higher at ambient temperature and ambient+3℃ in the late growth stage. The photosynthesis rate (A), stomatal conductance (gs), and transpiration rate (E) were higher at ambient+3℃ than at ambient temperature. Furthermore, at ambient+3℃, the net photosynthetic rate (Amax) was high, while the dark respiration rate (Rd) was low. At ambient temperature and ambient+3℃, bulb development was healthier, resulting in better productivity and more commercial bulbs, while at ambient+6℃, the bulbs were small and secondary cloves developed, resulting in low commercial value. Therefore, at elevated temperatures caused by global warming, it is necessary to meet the low-temperature requirements before clove sowing, or to delay the sowing time, to improve germination rate and increase yield. The harvest should also be advanced to escape high-temperature stress in the bulb development stage.

Changes of Yield and Quality in Potato (Solanum tuberosum L.) by Heat Treatment (폭염처리에 의한 감자의 수량성과 품질 변화)

  • Lee, Gyu-Bin;Choi, Jang-Gyu;Park, Young-Eun;Jung, Gun-Ho;Kwon, Do-Hee;Jo, Kwang-Ryong;Cheon, Chung-Gi;Chang, Dong Chil;Jin, Yong-Ik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.145-154
    • /
    • 2022
  • Due to abnormal weather conditions caused by climate change, natural disasters and damages are gradually increasing around the world. Global climate change as accompanied by warming is projected to exert adverse impact on production of potato, which is known as cool season crop. Even though, role of potato as a food security crop is expected to increase in the future, the climate change impacts on potato and adaption strategies are not sufficiently established. Therefore, this study was conducted to analyze the damage pattern of potatoes due to high temperature treatment and to evaluate the response of cultivars. T he high temperature treatment (35~38℃) induced heat stress by sealing the plastic house in midsummer (July), and the quantity and quality characteristics of potatoes were compared with the control group. T otal yield, marketable yield (>80 g) and the number of tubers per plants decreased when heat treatment was performed, and statistical significance was evident. In the heat treatment, 'Jayoung' cultivar suffered a high heat damage with an 84% reduction in yield of >80 g compared to the control group. However, in Jopung cultivar, the decrease was relatively small at 26%. Tuber physiological disturbances (Secondary growth, Tuber cracking, Malformation) tended to increase in the heat stress. Under heat conditions, the tubers were elongated overall, which means that the marketability of potatoes was lowered. T he tuber firmness and dry matter content tended to decrease significantly in the heat-treated group. T herefore, the yield and quality of tubers were damaged when growing potatoes in heat conditions. T he cultivar with high heat adaptability was 'Jopung'. T his result can be used as basic data for potato growers and breeding of heat-resistant cultivars.

Hydrological Drought Assessment and Monitoring Based on Remote Sensing for Ungauged Areas (미계측 유역의 수문학적 가뭄 평가 및 감시를 위한 원격탐사의 활용)

  • Rhee, Jinyoung;Im, Jungho;Kim, Jongpil
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.525-536
    • /
    • 2014
  • In this study, a method to assess and monitor hydrological drought using remote sensing was investigated for use in regions with limited observation data, and was applied to the Upper Namhangang basin in South Korea, which was seriously affected by the 2008-2009 drought. Drought information may be obtained more easily from meteorological data based on water balance than hydrological data that are hard to estimate. Air temperature data at 2 m above ground level (AGL) were estimated using remotely sensed data, evapotranspiration was estimated from the air temperature, and the correlations between precipitation minus evapotranspiration (P-PET) and streamflow percentiles were examined. Land Surface Temperature data with $1{\times}1km$ spatial resolution as well as Atmospheric Profile data with $5{\times}5km$ spatial resolution from MODIS sensor on board Aqua satellite were used to estimate monthly maximum and minimum air temperature in South Korea. Evapotranspiration was estimated from the maximum and minimum air temperature using the Hargreaves method and the estimates were compared to existing data of the University of Montana based on Penman-Monteith method showing smaller coefficient of determination values but smaller error values. Precipitation was obtained from TRMM monthly rainfall data, and the correlations of 1-, 3-, 6-, and 12-month P-PET percentiles with streamflow percentiles were analyzed for the Upper Namhan-gang basin in South Korea. The 1-month P-PET percentile during JJA (r = 0.89, tau = 0.71) and SON (r = 0.63, tau = 0.47) in the Upper Namhan-gang basin are highly correlated with the streamflow percentile with 95% confidence level. Since the effect of precipitation in the basin is especially high, the correlation between evapotranspiration percentile and streamflow percentile is positive. These results indicate that remote sensing-based P-PET estimates can be used for the assessment and monitoring of hydrological drought. The high spatial resolution estimates can be used in the decision-making process to minimize the adverse impacts of hydrological drought and to establish differentiated measures coping with drought.

Social and Economic Effects of Forest Management Certification: a Case of Jeju Experimental Forest (산림경영인증의 사회·경제적 효과 분석: 제주시험림의 사례)

  • Lee, Seong Youn;Lee, Ho Sang;Chung, Young Gyo;Joo, Rin Won
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.4
    • /
    • pp.254-262
    • /
    • 2012
  • The purposes of the research in related to FSC in JuJe experimental forests (JJEFs) is to make pre and post socio-economic comparisons and play an important role of FSC, and recognition change to FSC timbers and to make an analysis to consumers' needs. As the results of onsite survey in 2005, respondents show a high awareness of SFM and FSC in comparisons of 2004, and the JJEFs play a critical role to make SFM and FSC advertisement worldwide, such as consumers' satisfaction to SFM and FSC is high. Hence provision of JJEF information such as job creation and socio-economic impacts to stockholders could make their satisfaction improving. Most of respondents to the FSC of JJEF represent a positive rate while low awareness to FSC timber is represented. Therefore, necessary information about JJEF FSC with forest management, process and consumption pattern of FSC is required into citizens. The final results prove that FSC effects such as 1.3 billion won direct additional benefits in terms of socio-economic aspects including environmental benefits and job creation and economic effects are enough to offset 1.3 billion won additional costs.

A Study on the Multiple Effects of School Renovation on Students, Teachers, Schools and Local Community (학교공간 개선이 학생, 교사, 학교 및 지역사회에 미치는 다면적 효과에 관한 연구)

  • Shin, Na-Min;Park, Jong-Hyang
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.6
    • /
    • pp.45-56
    • /
    • 2011
  • This study explored what impacts can be brought to students, teachers, schools, and community by the improvement of physical environment of school spaces. For the purpose, we studied 5 schools (2 elementary and 3 middle schools) who took part in the Happy School Project funded by the Ministry of Culture, Sports, and Tourism in 2008. Ten series of Focus Group Interviews were carried out with a sample of 28 students and 20 teachers who experienced both before and after the school renovation project. The analysis of the interview data revealed that although the project was concerned with a part of school space such as restroom or reading room, it could bring multiple effects such as following: First, the students addressed that they felt "good" about school environment, which led them to feel good about their "schools." This change was found out to bring about more positive attitudes towards a school in general, public manners, peer relationships, emotional well-being, and learning. Second, the teachers became to value more their principals' leadership, being more satisfied with their work environment and more concerned about management of school facilities, and happier with students in terms of teaching and guidance than before. Third, all the 5 schools seem to go through a noticeable change in terms of a school climate and ethos in a more positive and harmonious way. Finally, 'spread', 'promotion', and 'openness' effects were discussed with regard to the relationships between the schools and local community.

  • PDF

Sea Level Rise at the Southwestern Coast of Korean Peninsula

  • Oh Nam-Sun;Kang Ju-Whan;Moon Seung-Rok
    • Journal of Navigation and Port Research
    • /
    • v.29 no.4
    • /
    • pp.327-333
    • /
    • 2005
  • Sea level (MSL, MHWL, or MLWL) change has been main concern to scientists and engineers and it can be primarily due to both change of climate and vertical movement of land. This paper reports the intensive analysis of the sea level changes and broad discussion of the future at the southwestern coast of Korean peninsula. Regression analysis was conducted to investigate general tendency and periodicity of the sea levels at the six different study sites such as Gunsan-I(inner port), Gunsan-O(outer port), Mokpo, Yeosu, Heuksan and Jeju and the results were compared with global values. Besides the changes of sea levels due to global warming, the influence of the man-made structure such as seadike and seawall was attempted to quantify using the minimization of the Root Mean Square(RMS) error. The results show that it is a general tendency that the values of mean sea level rise at the southwestern coast of Korean Peninsula, especially at Gunsan-I and Jeju, are somewhat larger compared to global average values. There is also some evidence that tidal amplifications are found just after construction of man-made structure at Gunsan-I and Mokpo. However, both sites show different mechanism in relation to tidal choking, tidal flat and river discharge. The impact due to construction of man-made structure is considerably larger at Mokpo site, while the impacts due to man-made structure and the effect of sea level rise are relatively identical at Gunsan-I site. This study is expected to provide some intuition to future design.

Satellite-based Evaporative Stress Index (ESI) as an Indicator of Agricultural Drought in North Korea (Evaporative Stress Index (ESI)를 활용한 북한의 위성영상기반 농업가뭄 평가)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Hong, Eun-Mi;Kim, Dae-Eui;Svoboda, Mark D.;Tadesse, Tsegaye;Wardlow, Brian D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • North Korea has frequently suffered from extreme agricultural crop droughts, which have led to food shortages, according to the Food and Agriculture Organization (FAO). The increasing frequency of extreme droughts, due to global warming and climate change, has increased the importance of enhancing the national capacity for drought management. Historically, a meteorological drought index based on data collected from weather stations has been widely used. But it has limitations in terms of the distribution of weather stations and the spatial pattern of drought impacts. Satellite-based data can be obtained with the same accuracy and at regular intervals, and is useful for long-term change analysis and environmental monitoring and wide area access in time and space. The Evaporative Stress Index (ESI), a satellite-based drought index using the ratio of potential and actual evaporation, is being used to detect drought response as a index of the droughts occurring rapidly over short periods of time. It is more accurate and provides faster analysis of drought conditions compared to the Standardized Precipitation Index (SPI), and the Palmer Drought Severity Index (PDSI). In this study, we analyze drought events during 2015-2017 in North Korea using the ESI satellite-based drought index to determine drought response by comparing with it with the SPI and SPEI drought indices.

A Review on Environmental Impact Assessment and Policy Utilization through the Establishment of Ecological Outlook and Evaluation System (자연생태 전망평가체계 마련을 통한 환경영향평가 및 정책 활용방안 고찰)

  • Who-Seung Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.363-376
    • /
    • 2023
  • As the risk of biodiversity reduction and extinction becomes serious due to climate change and indiscriminate development, the importance of conservation of the natural environment and ecosystem is increasing. In this situation, Ireviewed that overseas cases of the ecological outlook and evaluation system aimed at providing information on natural resources and ecosystem change. As a results, other countries showed that various research institutes have been carrying on field surveys by classification group, but it was different from us that the investigated data are collected and managed in an integrated manner and repeatedly provided within a short period of time. In addition, it was analyzed that it was highly utilized in policy and environmental impact assessment by providing evaluation-based prediction and outlook information along with basic survey data. Based on this, the limitations of information use in our wildlife surveys and environmental impacts assessments were analyzed, and the estabilishment of a ecology outlook and evaluation system and policy support measures were considered. In addition, based on the proposed outlook and evaluation system preparation plan, a policy direction that can be effectively used in domestic natural ecosystem policies was proposed.