• Title/Summary/Keyword: climate change impacts

Search Result 514, Processing Time 0.03 seconds

Municipal solid waste management in India - Current status, management practices, models, impacts, limitations, and challenges in future

  • Jagriti Patel;Sanskriti Mujumdar;Vijay Kumar Srivastava
    • Advances in environmental research
    • /
    • v.12 no.2
    • /
    • pp.95-111
    • /
    • 2023
  • Pollution, climate change, and waste accumulation are only some of the new problems that have arisen because of the exponential population growth of the past few decades. As the global population expands, managing municipal solid trash becomes increasingly difficult. This is by far the most difficult obstacle for governments to overcome, especially in less developed nations. The improper open dumping of trash, which is causing mayhem across the country, has two immediate effects: it contaminates groundwater and surface water. Air pollution and the accumulation of greenhouse gases are both exacerbated by the release of methane and other harmful waste gases. Leachate from the landfill leaks underground and pollutes groundwater. In most cases, leachate moves into the groundwater zone and pollutes it after forming in association with precipitation that infiltrates via waste. This has far-reaching effects on people's health and disturbs the natural environment. This review article critically examines the current state of Solid Waste Management (SWM), addressing both the highlighted concerns and the government management solutions that have been put in place to address these issues. In addition, the constraints, and difficulties that India will face in the future in terms of solid waste management and the role of models for such a system are discussed.

A Study on the Domestic Trends and Development Strategies of Marine Energy Research in South Korea (국내 해양에너지 연구동향 및 발전 전략에 관한 연구)

  • Sang-Hee Lee;Jin-Hoo Kim;Sung-Bo Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.173-182
    • /
    • 2024
  • While the current share of marine energy in South Korea is less than 1%, it is globally recognized as a resource approximately four times the annual electricity production. Considering the diverse geographical features of the East Sea, South Sea, and West Sea, marine energy development is crucial for South Korea and essential for achieving the 2050 carbon neutrality goal. Policy efforts for marine energy deployment focus on establishing an innovative, open, and integrated R&D system to respond flexibly. The construction of a scientific, economic, and social valid site selection system, along with a maritime spatial planning regime that considers environmental and socio-economic impacts, is emphasized. To expedite the early activation of marine energy, comprehensive policy endeavors, including discriminatory support policies and participation in international standardization, are anticipated to contribute to the sustainable development and dissemination of marine energy. Marine renewable energy plays a significant role in sustainability and addressing climate change, considered an essential component of South Korea's efforts toward carbon neutrality.

Assessment of Climate Change Impacts on Stream and Lake Water Quality (미래 기후변화가 하천 및 호소수질에 미치는 영향 평가)

  • Park, Jong-Yoon;Joh, Hyung-Kyung;Shin, Hyung-Jin;Yu, Yung-Seak;Jang, Cheol-Hee;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.48-48
    • /
    • 2011
  • 본 연구에서는 미래 기후변화가 하천 및 호소수질에 미치는 영향을 평가하고자 유역 수문-수질 모의가 가능한 SWAT(Soil and water assessment tool) 모형과 호소수질 모의가 가능한 WASP(Water Quality Simulation Program) 모형을 연계운영하여 충주호를 포함하는 충주댐 유역($6,642.0km^2$)에 적용하였다. 이를 위해 IPCC(Intergovernmental panel on climate change)에서 제공하는 A1B 배출시나리오를 포함하는 MIROC3.2 hires 모형의 결과로부터 충주댐 유역의 총 6개 기상관측소에 대한 과거 30년(1997~2006) 실측자료를 바탕으로 미래 온도와 강수에 대한 편이보정(Bias correction) 및 Change Factor Method로 상세화(Downscaling)하여 미래 기후자료(2020s, 2050s, 2080s)를 생산하였다. 미래 연평균 온도는 기준년도인 2000년에 비해 최대 $+4.8^{\circ}C$(2080s)의 온도증가를 보였으며, 강수량의 경우 여름과 가을 강수량이 다소 감소하였으나 연평균 강수량은 최대 +34.4%(2080s) 증가하는 것으로 전망되었다. 먼저, SWAT 모형을 이용한 기후변화에 따른 댐 유입량은 39.8%(2080s) 증가는 것으로 분석되었으며 유역의 유출특성 변화로 인한 유사량은 지표유출변화에 기인하여 봄과 겨울에 증가하는 경향과 함께 -14.5%(2020s) ~ +27.3%(2080s)의 변화를 보이는 것으로 분석되었다. 영양물질에 대한 오염부하량은 2080s에서 T-N이 증가추세를 보이며 최대 87.3% 까지 증가하는 반면, T-P는 유사량과 유사한 변화패턴을 보이며 최대 48.4%까지 감소하는 것으로 분석되었다. 호소수질 모델링을 위한 충주호의 Segment 구성은 충주댐1 지점에서부터 충주댐4 지점까지 전체 수표면적 $65.7km^2$에 대하여 상층과 하층 총 760개로 구성하였으며, SWAT 모형에 의한 충주호 유입하천 소유역에서의 미래 유출 및 영양물질 자료를 WASP 모형의 초기값으로 입력하여 수체 내의 BOD, Chl-a, T-N, T-P 변화 분석을 실시하였다. 이와 같이 지구 온난화에 의한 기후변화는 강우특성 변화에 따른 가뭄과 홍수 등 극한 기상현상의 발생, 유역 물순환 체계 변화를 야기 시키므로서 수자원 부존량 변화에 영향을 미칠 뿐만 아니라 기온상승에 따른 수온변화, 비점오염물질의 거동에도 변화를 초래하여 하천 및 호소 수질에 큰 영향을 미칠 것으로 판단된다.

  • PDF

Occupational Heat Stress Impacts on Health and Productivity in a Steel Industry in Southern India

  • Krishnamurthy, Manikandan;Ramalingam, Paramesh;Perumal, Kumaravel;Kamalakannan, Latha Perumal;Chinnadurai, Jeremiah;Shanmugam, Rekha;Srinivasan, Krishnan;Venugopal, Vidhya
    • Safety and Health at Work
    • /
    • v.8 no.1
    • /
    • pp.99-104
    • /
    • 2017
  • Background: Workers laboring in steel industries in tropical settings with high ambient temperatures are subjected to thermally stressful environments that can create well-known risks of heat-related illnesses and limit workers' productivity. Methods: A cross-sectional study undertaken in a steel industry in a city nicknamed "Steel City" in Southern India assessed thermal stress by wet bulb globe temperature (WBGT) and level of dehydration from urine color and urine specific gravity. A structured questionnaire captured self-reported heat-related health symptoms of workers. Results: Some 90% WBGT measurements were higher than recommended threshold limit values ($27.2-41.7^{\circ}C$) for heavy and moderate workloads and radiational heat from processes were very high in blooming-mill/coke-oven ($67.6^{\circ}C$ globe temperature). Widespread heat-related health concerns were prevalent among workers, including excessive sweating, fatigue, and tiredness reported by 50% workers. Productivity loss was significantly reported high in workers with direct heat exposures compared to those with indirect heat exposures ($x^2=26.1258$, degrees of freedom = 1, p < 0.001). Change in urine color was 7.4 times higher among workers exposed to WBGTs above threshold limit values (TLVs). Conclusion: Preliminary evidence shows that high heat exposures and heavy workload adversely affect the workers' health and reduce their work capacities. Health and productivity risks in developing tropical country work settings can be further aggravated by the predicted temperature rise due to climate change, without appropriate interventions. Apart from industries enhancing welfare facilities and designing control interventions, further physiological studies with a seasonal approach and interventional studies are needed to strengthen evidence for developing comprehensive policies to protect workers employed in high heat industries.

On the Change of Flood and Drought Occurrence Frequency due to Global Warming : 1. Change of Daily Rainfall Depth Distribution due to Different Monthly/Yearly Rainfall Depth (지구온난화에 따른 홍수 및 가뭄 발생빈도의 변화와 관련하여 : 1. 연/월강수량의 변화에 따른 일강수량 분포의 변화분석)

  • Yun, Yong-Nam;Yu, Cheon-Sang;Lee, Jae-Su;An, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.617-625
    • /
    • 1999
  • Global warming has begun since the industrial revolution and it is getting worse recently. Even though the increase of greenhouse gases such as $CO_2$ is thought to be the main cause for global warming, its impact on global climate has not been revealed clearly in rather quantitative manners. However, researches using General Circulation Models(GCMs) has shown the accumulation of greenhouse gases increases the global mean temperature, which in turn impacts on the global water circulation pattern. This changes in global water circulation pattern result in abnormal and more frequent meteorological events such as severe floods and droughts, generally more severe than the normal ones, which are now common around the world and is referred as a indirect proof of global warming. Korean peninsula also cannot be an exception and have had several extremes recently. The main objective of this research is to analyze the impact of global warming on the change of flood and drought frequency. Based on the assumption that now is a point in a continuously changing climate due to global warming, we analyzed the observed daily rainfall data to find out how the increase of annual rainfall amount affects the distribution of daily rainfall. Obviously, the more the annual rainfall depth, the more frequency of much daily rainfall, and vice versa. However, the analysis of the 17 points data of Keum river basin in Korea shows that especially the number of days of under 10mm or over 50mm daily rainfall depth is highly correlated with the amount of annual rainfall depth, not the number of dry days with their correlation coefficients quite high around 0.8 to 0.9.

  • PDF

Estimation of Rice Cultivation Impacts on Water Environment with Environmental Characteristics and Agricultural Practices by Nitrogen Balances (질소수지에 의한 환경특성과 영농방법별 벼농사의 수질영향 평가)

  • Roh, Kee-An;Kim, Min-Kyeong;Ko, Byong-Gu;Kim, Gun-Yeob;Shim, Kyo-Moon;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.439-446
    • /
    • 2009
  • Nitrogen balance in the regional scale which was calculated the difference between nitrogen input and output was estimated to assess the impact of rice cultivation on water environment. Nitrogen balances in Gyeonggi province, where nitrogen concentration in irrigation water was high and in Chungnam province, where nitrogen absorbtion by rice was high, were -5.4 and -8.3 kg $-8.3kg\;ha^{-1}\;yr^{-1}$, respectively. Nitrogen balances of paddy field in Gangwon province, where nitrogen output was small and irrigation water was clean, and in Gyeongnam province, where organic matter content of soil was high and rice yield was low, were 4.9 and $14.0kg\;ha^{-1}\;yr^{-1}$, respectively. Average nitrogen balance and total nitrogen absorption of paddy field in Korea were estimated to $-0.3kg\;ha^{-1}\;yr^{-1}$ and $-3,315Mg\;yr^{-1}$, respectively. When the nitrogen concentration in irrigation water was increased by $1mg \;L^{-1}$, nitrogen balance of rice paddy changed by $-2.91kg\;ha^{-1}\;yr^{-1}$. Also, when nitrogen fertilizer applied was decreased from 110 to $90kg\;ha^{-1}$ and the same harvest was maintained, the nitrogen absorption by rice paddy from irrigation water was estimated to increase by 10,600 Mg per year in Korea. However, in cases, the harvest was reduced to either 90% or 85%, nitrogen balances were changed from -11.7 to -2.3 and $2.4kg\;ha^{-1}$, respectively. These results suggest that the reduction of nitrogen fertilizer use may not always lead to a negative nitrogen balance and sustainable agriculture can achieve by not cutting down the use of fertilizer only but by reduction of fertilizer application concurrently by maintenance of harvest and by utilization of environmental characteristics such as nutrient contents in irrigation water and soils.

Photosynthesis and Growth of Southern-type Garlic (Allium sativum L.) in Response to Elevated Temperatures in a Temperature Gradient Tunnel (온도구배터널 내 상승온도에 의한 난지형 마늘(Allium sativum L.)의 광합성 및 생육 특성의 변화)

  • Oh, Seo-Young;Moon, Kyung Hwan;Song, Eun Young;Shin, Minji;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.250-260
    • /
    • 2019
  • This study assessed clove germination, shoot growth, photosynthesis and bulb development of southern-type garlic (Allium sativum L.) in a temperature gradient tunnel (TGT), to examine the impacts of increases in temperature on the growth of garlic and find a way to minimize them. The temperatures in the middle and outlet of the TGT were 3.2℃ and 5.8℃ higher, respectively, than the ambient temperature at the tunnel inlet. The germination of garlic cloves was late at temperatures of ambient+3℃ (in the middle of the TGT) and ambient+6℃ (at the outlet) than at ambient temperature (at the inlet). However, bolting and the timing of maximum leaf number per plant were faster at ambient+3℃ or +6℃ than at ambient temperature. Shoot growth was generally greater at ambient temperature. Bulb growth did not significantly differ according to cultivation temperatures, but fresh and dry weights were slightly higher at ambient temperature and ambient+3℃ in the late growth stage. The photosynthesis rate (A), stomatal conductance (gs), and transpiration rate (E) were higher at ambient+3℃ than at ambient temperature. Furthermore, at ambient+3℃, the net photosynthetic rate (Amax) was high, while the dark respiration rate (Rd) was low. At ambient temperature and ambient+3℃, bulb development was healthier, resulting in better productivity and more commercial bulbs, while at ambient+6℃, the bulbs were small and secondary cloves developed, resulting in low commercial value. Therefore, at elevated temperatures caused by global warming, it is necessary to meet the low-temperature requirements before clove sowing, or to delay the sowing time, to improve germination rate and increase yield. The harvest should also be advanced to escape high-temperature stress in the bulb development stage.

Changes of Yield and Quality in Potato (Solanum tuberosum L.) by Heat Treatment (폭염처리에 의한 감자의 수량성과 품질 변화)

  • Lee, Gyu-Bin;Choi, Jang-Gyu;Park, Young-Eun;Jung, Gun-Ho;Kwon, Do-Hee;Jo, Kwang-Ryong;Cheon, Chung-Gi;Chang, Dong Chil;Jin, Yong-Ik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.145-154
    • /
    • 2022
  • Due to abnormal weather conditions caused by climate change, natural disasters and damages are gradually increasing around the world. Global climate change as accompanied by warming is projected to exert adverse impact on production of potato, which is known as cool season crop. Even though, role of potato as a food security crop is expected to increase in the future, the climate change impacts on potato and adaption strategies are not sufficiently established. Therefore, this study was conducted to analyze the damage pattern of potatoes due to high temperature treatment and to evaluate the response of cultivars. T he high temperature treatment (35~38℃) induced heat stress by sealing the plastic house in midsummer (July), and the quantity and quality characteristics of potatoes were compared with the control group. T otal yield, marketable yield (>80 g) and the number of tubers per plants decreased when heat treatment was performed, and statistical significance was evident. In the heat treatment, 'Jayoung' cultivar suffered a high heat damage with an 84% reduction in yield of >80 g compared to the control group. However, in Jopung cultivar, the decrease was relatively small at 26%. Tuber physiological disturbances (Secondary growth, Tuber cracking, Malformation) tended to increase in the heat stress. Under heat conditions, the tubers were elongated overall, which means that the marketability of potatoes was lowered. T he tuber firmness and dry matter content tended to decrease significantly in the heat-treated group. T herefore, the yield and quality of tubers were damaged when growing potatoes in heat conditions. T he cultivar with high heat adaptability was 'Jopung'. T his result can be used as basic data for potato growers and breeding of heat-resistant cultivars.

Hydrological Drought Assessment and Monitoring Based on Remote Sensing for Ungauged Areas (미계측 유역의 수문학적 가뭄 평가 및 감시를 위한 원격탐사의 활용)

  • Rhee, Jinyoung;Im, Jungho;Kim, Jongpil
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.525-536
    • /
    • 2014
  • In this study, a method to assess and monitor hydrological drought using remote sensing was investigated for use in regions with limited observation data, and was applied to the Upper Namhangang basin in South Korea, which was seriously affected by the 2008-2009 drought. Drought information may be obtained more easily from meteorological data based on water balance than hydrological data that are hard to estimate. Air temperature data at 2 m above ground level (AGL) were estimated using remotely sensed data, evapotranspiration was estimated from the air temperature, and the correlations between precipitation minus evapotranspiration (P-PET) and streamflow percentiles were examined. Land Surface Temperature data with $1{\times}1km$ spatial resolution as well as Atmospheric Profile data with $5{\times}5km$ spatial resolution from MODIS sensor on board Aqua satellite were used to estimate monthly maximum and minimum air temperature in South Korea. Evapotranspiration was estimated from the maximum and minimum air temperature using the Hargreaves method and the estimates were compared to existing data of the University of Montana based on Penman-Monteith method showing smaller coefficient of determination values but smaller error values. Precipitation was obtained from TRMM monthly rainfall data, and the correlations of 1-, 3-, 6-, and 12-month P-PET percentiles with streamflow percentiles were analyzed for the Upper Namhan-gang basin in South Korea. The 1-month P-PET percentile during JJA (r = 0.89, tau = 0.71) and SON (r = 0.63, tau = 0.47) in the Upper Namhan-gang basin are highly correlated with the streamflow percentile with 95% confidence level. Since the effect of precipitation in the basin is especially high, the correlation between evapotranspiration percentile and streamflow percentile is positive. These results indicate that remote sensing-based P-PET estimates can be used for the assessment and monitoring of hydrological drought. The high spatial resolution estimates can be used in the decision-making process to minimize the adverse impacts of hydrological drought and to establish differentiated measures coping with drought.

Social and Economic Effects of Forest Management Certification: a Case of Jeju Experimental Forest (산림경영인증의 사회·경제적 효과 분석: 제주시험림의 사례)

  • Lee, Seong Youn;Lee, Ho Sang;Chung, Young Gyo;Joo, Rin Won
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.4
    • /
    • pp.254-262
    • /
    • 2012
  • The purposes of the research in related to FSC in JuJe experimental forests (JJEFs) is to make pre and post socio-economic comparisons and play an important role of FSC, and recognition change to FSC timbers and to make an analysis to consumers' needs. As the results of onsite survey in 2005, respondents show a high awareness of SFM and FSC in comparisons of 2004, and the JJEFs play a critical role to make SFM and FSC advertisement worldwide, such as consumers' satisfaction to SFM and FSC is high. Hence provision of JJEF information such as job creation and socio-economic impacts to stockholders could make their satisfaction improving. Most of respondents to the FSC of JJEF represent a positive rate while low awareness to FSC timber is represented. Therefore, necessary information about JJEF FSC with forest management, process and consumption pattern of FSC is required into citizens. The final results prove that FSC effects such as 1.3 billion won direct additional benefits in terms of socio-economic aspects including environmental benefits and job creation and economic effects are enough to offset 1.3 billion won additional costs.