• Title/Summary/Keyword: climate change impacts

Search Result 512, Processing Time 0.039 seconds

Developing a tool for quick assessment of climate change impacts on exploitation effect of reservoirs in central provinces of Vietnam

  • Tung, H.T.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.200-200
    • /
    • 2016
  • Climate changes have impacted to many sectors including water resources in Vietnam. Vietnam is agricultural development country having a lot of reservoirs. These reservoirs play a very important role in flow regulation for water supply to economic sectors. In the context of undesirable impacts of climate change such as increasing temparature, evaporation, changing rainfall and rainfall pattern, water demands and inflow to reservoirs also are being influenced. This leads to changes of resevoir exploitation effects that needs to be assessed for adaptation solutions. This arcticle summaries the development of a tool for quick assessement of climate change impacts on exploitation effect of reservoir in central provinces of Vietnam.

  • PDF

Bio-Economic Relationships between Climate Change and Fisheries (기후변화와 수산업의 관계에 관한 연구)

  • Park, Seong-Kwae;Kwon, Hyeok-Jun;Park, Jong-Wun;Cha, Cheol-Pyo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.22 no.3
    • /
    • pp.388-401
    • /
    • 2010
  • This research aims at analyzing impacts of climate change on fisheries. Climate change is an additional pressure on top of the many which fish stocks already experience. This implies that the impact of climate change must be evaluated in the context of other anthropogenic pressures, which often have a much greater and more immediate effect. Conversely, it is evident that fish stocks will be more resilient to climate impacts if the stresses due to other factors, such as over-fishing and pollution, are minimized. Improved management of fisheries and of marine ecosystems can undoubtedly play an important role in adapting to the impacts of climate change. Most of the improvements which are needed do not require new science or understanding, they require patient development of acceptable, effective, responsive social institutions and instruments for achieving adaptive management. Management advices must include complete and transparent information on risks and uncertainties which arise from data quality and from structural deficiencies in the assessment models. Well-designed and reliable monitoring of fish stocks and the marine ecosystem is essential in order to detect changes and give warning in advance of alterations in the productivity of individual species and of the structure and functioning of the ecosystem and fishery economy on which they depend.

Consumers' awareness and behavior intention on meat consumption according to climate change

  • Lim, Kwon-Taek;Park, Jaehong
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.296-307
    • /
    • 2017
  • Globally, consumers' enormous and increasing appetite for meat is one of the biggest causes of climate change because livestock industry emits more greenhouse gas than transportation. The purpose of this study is to analyze consumer awareness about the impact of meat consumption on sustainability in response to climate change. Based on the theory of planned behavior, the attitudes, subjective norms, perceived behavioral control, prior knowledge, and risk perception variables were analyzed to evaluate the impact of climate change awareness over consumer behavior on meat consumption. Major findings are as follows: consumers were aware of climate change but has made few changes to their meat consumption. In addition, changes in meat consumption were found to be caused by health safety concerns, such as disease outbreaks. Significant variables related to meat consumption patterns associated to climate change impacts were household income, age, attitude, subjective norm, perceived behavioral control, and prior knowledge. These results suggest some implications for policy. There is a need for public relations and education to make the public aware of and better understanding of link between climate change and diet. Also, government should make efforts to raise awareness of mitigation of climate change such as comprehensive food labels which are identifying lesser impacts on climate and better dietary guideline instructions which would include coping with climate change.

Climate Change and Individual Life History (기후변화와 개체의 생활사)

  • Lee, Who-Seung
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.275-286
    • /
    • 2012
  • Over the last 20 years there have been more than 3000 peer-reviewed papers relating to climate change and biodiversity published, and still the numbers are increasing. However, most studies focused on the impacts of climate change at population or community levels, and the results invariably reveal that there has been, or will be, a negative effect on the structure and pattern of biodiversity. Moreover, the climate change models and statistical analyses used to test the impacts are only newly developed, and the analyses or predictions can often be misled. In this review, I ask why an individual's life history is considered in the study how climate change affects biodiversity, and what ecological factors are impacted by climate change. Using evidence from a range of species, I demonstrate that diverse life history traits, such as early growth rate, migration/foraging behaviour and lifespan, can be shifted by climate change at individual level. Particularly I discuss that the optimal decision under unknown circumstance (climate change) would be the reduction of the ecological fitness at individual level, and hence, a shift in the balance of the ecosystem could be affected without having a critical impact on any one species. To conclude, I summarize the links between climate changes, ecological decision in life history, the revised consequence at individual level, and discuss how the finely-balanced relationship affects biodiversity and population structure.

Vulnerability Assessment of Human Health Sector due to Climate Change: Focus on Ozone (기후변화에 따른 보건 분야의 취약성 평가: O3을 중심으로)

  • Lee, Jae-Bum;Lee, Hyun-Ju;Moon, Kyung-Jung;Hong, Sung-Chul;Kim, Deok-Rae;Song, Chang-Keun;Hong, You-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.22-38
    • /
    • 2012
  • Adaptation of climate change is necessary to avoid unexpected impacts of climate change caused by human activities. Vulnerability refers to the degree to which system cannot cope with impacts of climate change, encompassing physical, social and economic aspects. Therefore the quantification of climate change impacts and its vulnerability is needed to identify vulnerable regions and to setup the proper strategies for adaptation. In this study, climate change vulnerability is defined as a function of climate exposure, sensitivity, and adaptive capacity. Also, we identified regions vulnerable to ozone due to climate change in Korea using developed proxy variables of vulnerability of regional level. 18 proxy variables are selected through delphi survey to assess vulnerability over human health sector for ozone concentration change due to climate change. Also, we estimate the weighting score of proxy variables from delphi survey. The results showed that the local regions with higher vulnerability index in the sector of human health are Seoul and Daegu, whereas regions with lower one are Jeollanam-do, Gyeonggi-do, Gwangju, Busan, Daejeon, and Gangwon-do. The regions of high level vulnerability are mainly caused by their high ozone exposure. We also assessed future vulnerability according to the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2, A1FI, A1T, A1B, B2, and B1 scenarios in 2020s, 2050s and 2100s. The results showed that vulnerability increased in all scenarios due to increased ozone concentrations. Especially vulnerability index is increased by approximately 2 times in A1FI scenarios in the 2020s. This study could support regionally adjusted adaptation polices and the quantitative background of policy priority as providing the information on the regional vulnerability of ozone due to climate change in Korea.

Future flood frequency analysis from the heterogeneous impacts of Tropical Cyclone and non-Tropical Cyclone rainfalls in the Nam River Basin, South Korea

  • Alcantara, Angelika;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.139-139
    • /
    • 2021
  • Flooding events often result from extreme precipitations driven by various climate mechanisms, which are often disregarded in flood risk assessments. To bridge this gap, we propose a climate-mechanism-based flood frequency analysis that accommodates the direct linkage between the dominant climate processes and risk management decisions. Several statistical methods have been utilized in this approach including the Markov Chain analysis, K-nearest neighbor (KNN) resampling approach, and Z-score-based jittering method. After that, the impacts of climate change are associated with the modification of the transition matrix (TM) and the application of the quantile mapping approach. For this study, we have selected the Nam River Basin, South Korea, to consider the heterogeneous impacts of the two climate mechanisms, including the Tropical Cyclone (TC) and non-TCs. Based on our results, while both climate mechanisms have significant impacts on future flood extremes, TCs have been observed to bring more significant and immediate impacts on the flood extremes. The results in this study have proven that the proposed approach can lead to a new insights into future flooding management.

  • PDF

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF

Reviewing of Integrated Assessment of the Impacts of Climate Change and Sea-Level Rise on Agricultural Sector (기후변화·해수면 상승에 따른 농업부문 통합평가 사례연구 비교분석 및 개선방안)

  • Ahn, SoEun;Oh, SeoYun
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.299-314
    • /
    • 2016
  • The aim of this paper is to review integrated assessment studies conducted to address the impacts of climate change sea-level rise on agricultural sector and to derive suggestions for improving the integrated assessment process to assist decision-makers in establishing climate change adaptation policy. We collect integrated assessment studies which are based on the impact-pathway analysis, compare their step-by-step procedures and identify main factors addressed in each step. The assessment process is typically carried out in the sequence of scenario development, determination of assessment scope, physical impact assessment, economic analysis and synthesis of the outcomes from each step. We identify two types of integrated assessment. The first one examines the impacts of changes in temperature and/or precipitation on the crop-cultivation patterns and/or agricultural productivity and resulting economic effects on agricultural sector. The other investigates the impacts of sea-level rise on land use/coverage and resulting economic damages in terms of land-value loss where the effects on agriculture is treated as one sector among others. To enhance integrated assessment, we suggest that 1) scenarios need to incorporate the effects of climate change and sea-level rise simultaneously, 2) scope of the assessment needs to be extended to include ecosystem services as well as crop production, 3) social and cultural aspects need to be considered in addition to economic analysis, and 4) synthesis of the outcomes from each step should be able to combine quantitative as well as qualitative information.

Review of Trends in Recent Climate Research by Korean Climatologists (최근 한국의 기후학 연구 동향)

  • Lee, Eun-Gul;Lee, Kyoung-Mi;Lee, Seung-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.4
    • /
    • pp.490-513
    • /
    • 2012
  • This study reviewed recent trends in climate research by Korean climatologists. We analyzed six domestic journals listed in the Korean Citation Index and four international journals listed in the Science Citation Index during 2001-2011. Research on climate change has rapidly increased during the study period and studies on precipitation variability have been given continual attentions among Korean climatologists. In climate change research, meteorologists focused on characteristics, prediction, and causes while geographers were more interested in characteristics and impacts of climate change. In applied climatology and bioclimatology, research on the impacts of climate change on agriculture, livestock, vegetation, and human health has increased under recent climate change. While there has been steady interest in climatography by Korean climatologists, the number of papers has generally decreased over the recent period.

  • PDF

The Pahlev Reliability Index: A measurement for the resilience of power generation technologies versus climate change

  • Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1658-1663
    • /
    • 2021
  • Research on climate change and global warming on the power generation systems are rapidly increasing because of the Importance of the sustainable energy supply, thus the electricity supply since its growing share, in the end, uses energy supply. However, some researchers conducted this field, but many research gaps are not mentioned and filled in this field's literature since the lack of general statements and the quantitative models and formulation of the issue. In this research, an exergy-based model is implemented to model a set of six power generation technologies (combined cycle, gas turbine, nuclear plant, solar PV, and wind turbine) and use this model to simulate each technology's responses to climate change impacts. Finally, using these responses to define and calculate a formulation for the relationship between the system's energy performance in different environmental situations and a dimensionless index to quantize each power technology's reliability against the climate change impacts called the Pahlev reliability index (P-index) of the power technology. The results have shown that solar and nuclear technologies are the most, and wind turbines are the least reliable power generation technologies.