• 제목/요약/키워드: clear sky brightness temperature

검색결과 17건 처리시간 0.025초

Introduction to Simulation Activity for CMDPS Evaluation Using Radiative Transfer Model

  • Shin, In-Chul;Chung, Chu-Yong;Ahn, Myoung-Hwan;Ou, Mi-Lim
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.282-285
    • /
    • 2007
  • Satellite observed brightness temperature simulation using a radiative transfer model (here after, RTM) is useful for various fields, for example sensor design and channel selection by using theoretically calculated radiance data, development of satellite data processing algorithm and algorithm parameter determination before launch. This study is focused on elaborating the simulation procedure, and analyzing of difference between observed and modelled clear sky brightness temperatures. For the CMDPS (COMS Meteorological Data Processing System) development, the simulated clear sky brightness temperatures are used to determine whether the corresponding pixels are cloud-contaminated in cloud mask algorithm as a reference data. Also it provides important information for calibrating satellite observed radiances. Meanwhile, simulated brightness temperatures of COMS channels plan to be used for assessing the CMDPS performance test. For these applications, the RTM requires fast calculation and high accuracy. The simulated clear sky brightness temperatures are compared with those of MTSAT-1R observation to assess the model performance and the quality of the observation. The results show that there is good agreement in the ocean mostly, while in the land disagreement is partially found due to surface characteristics such as land surface temperature, surface vegetation, terrain effect, and so on.

  • PDF

Characteristics of MODIS Satellite Data during Fog Occurrence near the Inchon International Airport

  • Yoo Jung-Moon;Kim Young-Mi;Ahn Myoung-Hwan;Kim Yong-Seung;Chung Chu-Yong
    • 한국지구과학회지
    • /
    • 제26권2호
    • /
    • pp.149-159
    • /
    • 2005
  • Simultaneous observations of MODIS (Moderate-resolution Imaging Spectroradiometer) onboard the Aqua and Terra satellites and weather station at ground near the Inchon International Airport (37.2-37.7 N, 125.7-127.2 E) during the period from December 2002 to September 2004 have been utilized in order to analyze the characteristics of satellite-observed infrared (IR) and visible data under fog and clear-sky conditions, respectively. The differences $(T_{3.7-11})$ in brightness temperature between $3.75{\mu}m\;and\;11.0{\mu}m$ were used as threshold values for remote-sensing fog (or low clouds) from satellite during day and night. The $T_{3.7-11}$ value during daytime was greater by about 21 K when it was foggy than that when it was clear, but during nighttime fog it was less by 1.5 K than during nighttime clear-sky. The value was changed due to different values of emission of fog particles at the wavelength. Since the near-IR channel at $3.7{\mu}m$ was affected by solar and IR radiations in the daytime, both IR and visible channels (or reflectance) have been used to detect fog. The reflectance during fog was higher by 0.05-0.6 than that during clear-sky, and varied seasonally. In this study, the threshold values included uncertainties when clouds existed above a layer of fog.

GMS/S-VISSR 자료로부터 Bispectral Thresholds 기법을 이용한 운량 분석에 관하여 (Cloud Cover Analysis from the GMS/S-VISSR Imagery Using Bispectral Thresholds Technique)

  • 서명석;박경윤
    • 대한원격탐사학회지
    • /
    • 제9권1호
    • /
    • pp.1-19
    • /
    • 1993
  • A simple bispectral threshold technique which reflects the temporal and spatial characteristics of the analysis area has been developed to classify the cloud type and estimate the cloud cover from GMS/S-VISSR(Stretched Visible and Infrared Spin Scan Radiometer) imagery. In this research, we divided the analysis area into land and sea to consider their different optical properties and used the same time observation data to exclude the solar zenith angle effects included in the raw data. Statistical clear sky radiance(CSRs) was constructed using maximum brightness temperature and minimum albedo from the S-VISSR imagery data during consecutive two weeks. The CSR used in the cloud anaysis was updated on the daily basis by using CSRs, the standard deviation of CSRs and present raw data to reflect the daily variation of temperature. Thresholds were applied to classify the cloud type and estimate the cloud cover from GMS/S-VISST imagery. We used a different thresholds according to the earth surface type and the thresholds were enough to resolve the spatial variation of brightness temperature and the noise in raw data. To classify the ambiguous pixels, we used the time series of 2-D histogram and local standard deviation, and the results showed a little improvements. Visual comparisons among the present research results, KMA's manual analysis and observed sea level charts showed a good agreement in quality.

정지기상위성 자료를 이용한 정량적 황사지수 개발 연구 (The Study on the Quantitative Dust Index Using Geostationary Satellite)

  • 김미자;김윤재;손은하;김금란;안명환
    • 대기
    • /
    • 제18권4호
    • /
    • pp.267-277
    • /
    • 2008
  • The occurrence and strength of the Asian Dust over the Korea Peninsular have been increased by the expansion of the desert area. For the continuous monitoring of the Asian Dust event, the geostationary satellites provide useful information by detecting the outbreak of the event as well as the long-range transportation of dust. The Infrared Optical Depth Index (IODI) derived from the MTSAT-1R data, indicating a quantitative index of the dust intensity, has been produced in real-time at Korea Meteorological Administration (KMA) since spring of 2007 for the forecast of Asian dust. The data processing algorithm for IODI consists of mainly two steps. The first step is to detect dust area by using brightness temperature difference between two thermal window channels which are influenced with different extinction coefficients by dust. Here we use dynamic threshold values based on the change of surface temperature. In the second step, the IODI is calculated using the ratio between current IR1 brightness temperature and the maximum brightness temperature of the last 10 days which we assume the clear sky. Validation with AOD retrieved from MODIS shows a good agreement over the ocean. Comparison of IODI with the ground based PM10 observation network in Korea shows distinct characteristics depending on the altitude of dust layer estimated from the Lidar data. In the case that the altitude of dust layer is relatively high, the intensity of IODI is larger than that of PM10. On the other hand, when the altitude of dust layer is lower, IODI seems to be relatively small comparing with PM10 measurement.

기상청 전구 수치예보모델을 활용한 Himawari-8/AHI 청천복사휘도 편차 특성 분석 (Bias Characteristics Analysis of Himawari-8/AHI Clear Sky Radiance Using KMA NWP Global Model)

  • 김보람;신인철;정주용;정성훈
    • 대한원격탐사학회지
    • /
    • 제34권6_1호
    • /
    • pp.1101-1117
    • /
    • 2018
  • 청천복사휘도는 히마와리-8호 정지궤도 기상위성에서 제공되는 주요 산출물 중의 하나로서, 자료동화 과정을 통해 수치예보 정확도 향상에 기여한다. 특히, 청천복사휘도는 대기운동벡터와 함께 대기 상층에서 자료동화의 효과를 보인다. 본 연구에서는 히마와리-8호 청천복사휘도의 편차 특성 분석과 평가를 통해 자료를 활용하는 사용자에게 정보를 제공해주고, 효과적으로 자료를 사용할 수 있도록 수치예보모델자료를 활용한 편차와 불확실성을 계산하였다. 일본 기상청에서 제공되는 청천복사휘도를 관측 자료로 사용하였고, 17 km 공간해상도의 기상청 전구 모델 Unified Model(UM) 자료와 복사전달모델 RTTOV-v11.2를 이용하여 청천복사휘도를 모의하였다. 먼저, 관측자료의 특성을 파악하고 관측자료와 모의된 청천복사휘도의 채널별 편차특성을 분석하였다. 전반적인 결과는 히마와리-8호 위성의 세 개의 수증기 채널(6.2, 6.9, $7.3{\mu}m$)에서는 양의 편차를 보인 반면에 대기창 적외 채널(10.4, 11.2, $12.4{\mu}m$)에서는 음의 편차를 보였다. 또한 분석결과는 계절과 영역에 따라 상이하게 나타났으며, 특히 사막이나 고지대 지역의 편차 특성이 뚜렷하게 나타났다. 이를 통해 청천복사자료를 활용할 때 시공간적인 특성을 고려해야 함을 확인할 수 있었다. 본 연구의 결과는 히마와리-8호 AHI의 청천복사휘도를 자료동화 할 때 전처리 과정에서 유용하게 활용될 수 있을 것이며, 2018년에 발사된 천리안-2A호의 산출물 활용에도 도움이 될 것으로 기대한다.

MODIS 적외채널 배경 밝기온도차를 이용한 동북아시아 황사 탐지 (Detection of Yellow Sand Dust over Northeast Asia using Background Brightness Temperature Difference of Infrared Channels from MODIS)

  • 박주선;김재환;홍성재
    • 대기
    • /
    • 제22권2호
    • /
    • pp.137-147
    • /
    • 2012
  • The technique of Brightness Temperature Difference (BTD) between 11 and $12{\mu}m$ separates yellow sand dust from clouds according to the difference in absorptive characteristics between the channels. However, this method causes consistent false alarms in many cases, especially over the desert. In order to reduce these false alarms, we should eliminate the background noise originated from surface. We adopted the Background BTD (BBTD), which stands for surface characteristics on clear sky condition without any dust or cloud. We took an average of brightness temperatures of 11 and $12{\mu}m$ channels during the previous 15 days from a target date and then calculated BTD of averaged ones to obtain decontaminated pixels from dust. After defining the BBTD, we subtracted this index from BTD for the Yellow Sand Index (YSI). In the previous study, this method was already verified using the geostationary satellite, MTSAT. In this study, we applied this to the polar orbiting satellite, MODIS, to detect yellow sand dust over Northeast Asia. Products of yellow sand dust from OMI and MTSAT were used to verify MODIS YSI. The coefficient of determination between MODIS YSI and MTSAT YSI was 0.61, and MODIS YSI and OMI AI was also 0.61. As a result of comparing two products, significantly enhanced signals of dust aerosols were detected by removing the false alarms over the desert. Furthermore, the discontinuity between land and ocean on BTD was removed. This was even effective on the case of fall. This study illustrates that the proposed algorithm can provide the reliable distribution of dust aerosols over the desert even at night.

KIAPS 전지구 수치예보모델 시스템에서 SAPHIR 자료동화 효과 (Impact of SAPHIR Data Assimilation in the KIAPS Global Numerical Weather Prediction System)

  • 이시혜;전형욱;송효종
    • 대기
    • /
    • 제28권2호
    • /
    • pp.141-151
    • /
    • 2018
  • The KIAPS global model and data assimilation system were extended to assimilate brightness temperature from the Sondeur $Atmosph{\acute{e}}rique$ du Profil $d^{\prime}Humidit{\acute{e}}$ Intertropicale par $Radiom{\acute{e}}trie$ (SAPHIR) passive microwave water vapor sounder on board the Megha-Tropiques satellite. Quality control procedures were developed to assess the SAPHIR data quality for assimilating clear-sky observations over the ocean, and to characterize observation biases and errors. In the global cycle, additional assimilation of SAPHIR observation shows globally significant benefits for 1.5% reduction of the humidity root-mean-square difference (RMSD) against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analysis. The positive forecast impacts for the humidity and temperature in the experiment assimilating SAPHIR were predominant at later lead times between 96- and 168-hour. Even though its spatial coverage is confined to lower latitudes of $30^{\circ}S-30^{\circ}N$ and the observable variable is humidity, the assimilation of SAPHIR has a positive impact on the other variables over the mid-latitude domain. Verification showed a 3% reduction of the humidity RMSD with assimilating SAPHIR, and moreover temperature, zonal wind and surface pressure RMSDs were reduced up to 3%, 5% and 7% near the tropical and mid-latitude regions, respectively.

FOG DETECTION OVER THE KOREAN PENINSULA DERIVED FROM SATELLITE OBSERVATIONS OF POLAR-ORBIT (MODIS) AND GEOSTATIONARY (GOES-9)

  • Yoo, Jung-Moon;Jeong, Myeong-Jae;Yoo, Hye-Lim;Rhee, Ju-Eun;Hur, Young-Min;Ahn, Myoung-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.664-667
    • /
    • 2006
  • Seasonal threshold values for fog detection over the ten airport areas in the Korean Peninsula have been derived, using the satellite-observed data of polar-orbit (Aqua/Terra MODIS) and geostationary (GOES-9) during two years. The values are obtained from reflectance at 0.65 ${\mu}m$ $(R_{0.65})$ and the difference in brightness temperature between 3.7 ${\mu}m$ and 11 ${\mu}m$ $(T_{3.7-11})$. In order to examine the discrepancy between the threshold values of two kinds of satellites, the following parameters have been analyzed under the condition of daytime/nighttime and fog/clear-sky, utilizing their simultaneous observations over the Seoul Metropolitan Area. The parameters are the brightness temperature at 3.7 ${\mu}m$ $(T_{3.7})$, the temperature at 11 ${\mu}m$ $(T_{11})$, and $T_{3.7-11}$ for day and night. The $R_{0.65}$ data are additionally included in the daytime. The GOES-9 thresholds over the nine airport areas except the Cheongju airport have revealed the accuracy of 60% in the daytime and 70% in the nighttime, based on statistical verification as follows; FAR, POD and CSI. However, the accuracy decreases in the foggy cases with twilight, precipitation, short persistence, or the higher cloud above fog.

  • PDF

Fog Sensing over the Korean Peninsula Derived from Satellite Observation of MODIS and GOES-9

  • Yoo, Jung-Moon;Jeong, Myeong-Jae;Yoo, Hye-Lim;Rhee, Ju-Eun;Hur, Young-Min;Ahn, Myoung-Hwan
    • 대한원격탐사학회지
    • /
    • 제22권5호
    • /
    • pp.373-377
    • /
    • 2006
  • Seasonal threshold values for fog detection over the ten airport areas in the Korean Peninsula have been derived, using the satellite-observed data of polar-orbit (Aqua/Terra MODIS) and geostationary (GOES-9) during two years. The values are obtained from reflectance at $0.65{\mu}m\;(R_{0.65})$ and the difference in brightness temperature between $3.7{\mu}m\;and\;11{\mu}m\;(T_{3.7-11})$. In order to examine the discrepancy between the threshold values of two kinds of satellites, the following parameters have been analyzed under the condition of daytime/nighttime and fog/clear-sky, utilizing their simultaneous observations over the Seoul Metropolitan Area. The parameters are the brightness temperature at $3.7{\mu}m\;(T_{3.7})$, the temperature at $11{\mu}m\;(T_{11}$, and $T_{3.7-11}$ for day and night. The $R_{0.65}$ data are additionally included in the daytime. The GOES-9 thresholds over the seven airport areas except the Cheongju airport have revealed the accuracy of 50% in the daytime and 70% in the nighttime, based on statistical verification for the independent samples as follows; FAR, POD and CSI. However, the accuracy decreases in the foggy cases with twilight, precipitation, short persistence, or the higher cloud above fog.

산악기상관측정보를 이용한 위성정보 기반의 전천후 기온 자료의 평가 - 강원권역을 중심으로 (Evaluation of the Satellite-based Air Temperature for All Sky Conditions Using the Automated Mountain Meteorology Station (AMOS) Records: Gangwon Province Case Study)

  • 장근창;원명수;윤석희
    • 한국농림기상학회지
    • /
    • 제19권1호
    • /
    • pp.19-26
    • /
    • 2017
  • 지표면 기온($T_{air}$ surface air temperature)은 기상 및 기후학 분야에서 대표적인 기상인자일 뿐만 아니라 육상생태계 기능을 조절하는 주요 환경조건 인자이다. MODIS와 같은 인공위성정보 활용 기술은 지표면 기온을 연속적으로 모니터링 할 수 있는 기회를 제공한다. 하지만 복잡 산악지역에서의 관측 정확도의 한계와 구름 등에 의한 자료 결측은 연속적인 모니터링을 제한한다. 이 연구에서는 위성정보를 기반으로 복잡 산악지역에서 인 강원도 지역을 대상으로 전천후 기온정보를 생산하여 산악기상관측자료를 이용하여 평가하였다. 산악지역에 대한 정확도 개선을 위해 Aqua MODIS 기온정보(MYD07_L2)에 대기기온감률 방법을 적용한 결과, 기존보다 약 4% RMSE 개선효과(ME의 경우 95%)가 나타났다. 전천후 기온정보 산출을 위해 MYD07_L2 기온정보와 GCOM-W1 AMSR2 37 GHz 밝기온도 자료간의 픽셀 기반의 회귀모형 방법을 적용하였다. 산악기상 관측 자료와 비교한 결과 전반적으로 좋은 일치도를 보였으나(r=0.80, RMSE=7.9K), 겨울철에 다소 과소모의의 경향을 나타냈다. 그럼에도 불구하고 전체 자료 중 결측되었던 61.4%의 자료(n=2,657)를 복원하여 복잡 산악지역에 대해 위성정보 기반의 전천후 기온정보 생산이 가능함을 확인하였다. 향후 이 연구에서 사용한 간단하고 효과적인 회귀모형 방법은 과거 및 최신 위성정보를 활용을 통한 시공간적인 확장이 가능할 것으로 사료된다.