• Title/Summary/Keyword: clear images

Search Result 466, Processing Time 0.026 seconds

Analysis of a Spun-CNT Based X-ray Source

  • Kim, Hyun Suk;Castro, Edward Joseph D.;Hun, Choong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.639-639
    • /
    • 2013
  • In this research we report the significant contribution of the as-spun multi-walled carbon nanotube (MWCNT) on the x-ray images formation using a low tube voltage x-ray source. The MWCNT, which was used for the fabrication of the spun CNT, was grown using a microwave plasma-enhanced chemical vapor deposition machine. Electrical-optics simulation software was utilized to determine the electron field emission trajectory of the triode-structure-as-spun CNT-based x-ray source. It was shown that a significant amount of converging electrons hit the target anode producing a clear x-ray image. These x-ray images where produced at a small amount of anode current of 0.67 mA at a tube voltage of 5 kV with the gate voltage of 0 V. Also, comparisons of the radiographs at various exposure times of the sample where analyzed with and without an x-ray dose filter. Results showed that spatially-resolved images were formed using the as-spun CNT at a low tube voltage with a $54-{\mu}m$ Al x-ray filter. This study can be used for low-voltage medical applications.

  • PDF

Images of deposited layers of organic light-emitting diodes observed by scanning-electron microscope (주사 전자 현미경으로 관찰한 유기 발광 소자의 누적층 모양)

  • Lee, Eun-Hye;Yoon, Hee-Myoung;Han, Wone-Keun;Kim, Tae-Wan;Lee, Won-Jae;Jang, Kyung-Uk;Ahn, Joon-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.298-299
    • /
    • 2008
  • Images of deposited layers of organic light-emitting diodes were observed by scanning-electron microscope (SEM). We were able to see a clear cross-sectional view of deposited layers. The SEM is a type of electron microscope that images the sample surface by scanning it with a high-energy beam of electrons in a raster scan pattern. A thickness of deposited layer measured by thickness monitor is close to a real value measured by a-step surface profiler within 5%. We were able to see a formation of domains of size about 50-100nm from a surface morphology of Al, and pin holes of size about 50nm.

  • PDF

A Study on the Recognition of Hand Vein Pattern using Graph Theory (그래프 이론에 의한 손 정맥 패턴 인식에 관한 연구)

  • Cho, Meen-Hwan
    • Journal of the Korea Computer Industry Society
    • /
    • v.10 no.5
    • /
    • pp.187-192
    • /
    • 2009
  • In this paper, we proposed an algorithm for personal identification of dorsal surface pattern of hand vein pattern using graph theory. Using dense ranee data images of the hand vein pattern, we used matching algorithm within the frame work of graph theory for the determination of the desired correspondence. Through preprocessing, the captured images are more sharp, clear and thinning. After thinning, the images are normalized and make graph with node and edge set. This normalized graph can make adjacent matrix. Each adjacent matrix from individual vein pattern are different. From examining the performance of individual vein patterns, we can approach performances well kind biometric technique.

  • PDF

A COMPARATIVE STUDY OF RADIOGRAPHIC LANDMARKS OF T.M.J. BY VARIOUS TECHNIQUES (악관절이 방사선상에 의한 비교 연구)

  • Lee Yoo Dong
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 1974
  • The author has studied roentgenographic images of temporomandibular articulation using various conventional roentgenographies. The roentgenographic images have obtained by application of the contrast media on the glenoid fossa and condylar head in a human dry skull. Comparing the various roentgenograms by Modified Transcranial projection, A-P T.M. articulation projection, Reverse Towne projection, Mayer projection and Bregma-Menton projection. The author has drawn following results. 1. The sharp radiogaphic details were obtained by all technics used except the Bregma-Menton projection, which seemed to be impractical to the study of T.M.J. because of to be shortened the image of condylar head. 2. The best image of the condyle-fossa relationship was appeared by Modified Transcranial projection and better image was acquired by Orbito-Ramus projection, but there were all inferior in Reverse Towne projection, Mayer projection and Bregma-Menton projection. 3. In all of the above techniques, the radiographic images of condylar head were clear and were appeared to be the convex type in Modified Transcranial projection, the angled type in Orbito-Ramus and Reverse Towne projection, the flat type in Mayer projection and the distorted angled type in Bregma-Menton projection. 4. The radiographic image of condylar head was shortened in Bregma-Menton projection only and was magnified somewhat in other projection.

  • PDF

Visualization of Crust in Metallic Piping Through Real-Time Neutron Radiography Obtained with Low Intensity Thermal Neutron Flux

  • Luiz, Leandro C.;Ferreira, Francisco J.O.;Crispim, Verginia R.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.781-786
    • /
    • 2017
  • The presence of crust on the inner walls of metallic ducts impairs transportation because crust completely or partially hinders the passage of fluid to the processing unit and causes damage to equipment connected to the production line. Its localization is crucial. With the development of the electronic imaging system installed at the Argonauta/Nuclear Engineering Institute (IEN)/National Nuclear Energy Commission (CNEN) reactor, it became possible to visualize crust in the interior of metallic piping of small diameter using real-time neutron radiography images obtained with a low neutron flux. The obtained images showed the resistance offered by crust on the passage of water inside the pipe. No discrepancy of the flow profile at the bottom of the pipe, before the crust region, was registered. However, after the passage of liquid through the pipe, images of the disturbances of the flow were clear and discrepancies in the flow profile were steep. This shows that this technique added the assembled apparatus was efficient for the visualization of the crust and of the two-phase flows.

A Study on the Characteristics of Electroencephalogram for the Evaluating Words of Soundscape Sound Source When Visual Information is Suggested (시각정보 제공에 따른 사운드스케이프 음원평가어휘별 뇌파변화에 관한 연구)

  • Song, Min-Jeong;Shin, Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.629-636
    • /
    • 2011
  • In this study, survey experiment and EEG test was carried out to know the effect of visual images on EEG for evaluating words of soundscape sound source with 18 subjects. Analysis on the EEG were executed to know the difference according to with and without visual images. Followings are results of this study. 1) There is no big difference with visual images in soundscape sound evaluating adjectives such as "Full", "Clear", "Enjoyable" whereas there is a big difference in soundscape sound evaluating adjectives such as "Pleasant", "Comfortable", "Gentle", "Sonorous". 2) There is a tendency that soundscape sound source which is consist of single sound source shows + 1 above increase in survey test when visual image is suggested whereas soundscape sound source which is consist of one more sound source shows - 1 below decrease in survey test. 3) Statistical analysis was used to know considerable probability. ${\alpha}$-wave has a considerable probability and Maximum level difference occurring brain spots were number 1 and 2.

MRI Image Super Resolution through Filter Learning Based on Surrounding Gradient Information in 3D Space (3D 공간상에서의 주변 기울기 정보를 기반에 둔 필터 학습을 통한 MRI 영상 초해상화)

  • Park, Seongsu;Kim, Yunsoo;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.178-185
    • /
    • 2021
  • Three-dimensional high-resolution magnetic resonance imaging (MRI) provides fine-level anatomical information for disease diagnosis. However, there is a limitation in obtaining high resolution due to the long scan time for wide spatial coverage. Therefore, in order to obtain a clear high-resolution(HR) image in a wide spatial coverage, a super-resolution technology that converts a low-resolution(LR) MRI image into a high-resolution is required. In this paper, we propose a super-resolution technique through filter learning based on information on the surrounding gradient information in 3D space from 3D MRI images. In the learning step, the gradient features of each voxel are computed through eigen-decomposition from 3D patch. Based on these features, we get the learned filters that minimize the difference of intensity between pairs of LR and HR images for similar features. In test step, the gradient feature of the patch is obtained for each voxel, and the filter is applied by selecting a filter corresponding to the feature closest to it. As a result of learning 100 T1 brain MRI images of HCP which is publicly opened, we showed that the performance improved by up to about 11% compared to the traditional interpolation method.

Evaluation of Clear Sky Models to Estimate Solar Radiation over the Korean Peninsula (한반도의 일사량 추정을 위한 청천일 모델의 비교 평가)

  • Song, Ahram;Choi, Wonseok;Yun, Changyeol;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.415-426
    • /
    • 2015
  • Solar radiation under a clear sky is a important factor in the process by which meteorological satellite images are converted into solar radiation maps, and the quality of estimations depends on the accuracy of clear sky models. Therefore, it is important to select models appropriate to the purpose of the study and the study area. In this instance, complex models were applied using Linke turbidity, including ESRA, Dumortier, and MODTRAN, in addition to simple models such as Bourges and PdBV, which consider only the solar elevation angles. The presence of cloud was identified using the Communication, Ocean, and Meteorological Satellite and the Meteorological imager (COMS MI), and reference data were then selected. In order to calculate the accuracy of the clear sky models, the concepts of RMSE and MBE were applied. The results show that Bourges and PdBV produced low RMSE values, while PdBV had relatively steady RMSE values. Also, simple models tend to underestimate global solar irradiation during spring and early summer. Conversely, in the winter season, complex methods often overestimate irradiation. In future work, the cause of overestimation and other factors will be analyzed and the clear sky models will be adjusted in order to make them suitable for the Korean Peninsula.

Development of Auto Tracking System for Baseball Pitching (투구된 공의 실시간 위치 자동추적 시스템 개발)

  • Lee, Ki-Chung;Bae, Sung-Jae;Shin, In-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.81-90
    • /
    • 2007
  • The effort identifying positioning information of the moving object in real time has been a issue not only in sport biomechanics but also other academic areas. In order to solve this issue, this study tried to track the movement of a pitched ball that might provide an easier prediction because of a clear focus and simple movement of the object. Machine learning has been leading the research of extracting information from continuous images such as object tracking. Though the rule-based methods in artificial intelligence prevailed for decades, it has evolved into the methods of statistical approach that finds the maximum a posterior location in the image. The development of machine learning, accompanied by the development of recording technology and computational power of computer, made it possible to extract the trajectory of pitched baseball from recorded images. We present a method of baseball tracking, based on object tracking methods in machine learning. We introduce three state-of-the-art researches regarding the object tracking and show how we can combine these researches to yield a novel engine that finds trajectory from continuous pitching images. The first research is about mean shift method which finds the mode of a supposed continuous distribution from a set of data. The second research is about the research that explains how we can find the mode and object region effectively when we are given the previous image's location of object and the region. The third is about the research of representing data into features that we can deal with. From those features, we can establish a distribution to generate a set of data for mean shift. In this paper, we combine three works to track baseball's location in the continuous image frames. From the information of locations from two sets of images, we can reconstruct the real 3-D trajectory of pitched ball. We show how this works in real pitching images.

Study on Distortion Compensation of Underwater Archaeological Images Acquired through a Fisheye Lens and Practical Suggestions for Underwater Photography - A Case of Taean Mado Shipwreck No. 1 and No. 2 -

  • Jung, Young-Hwa;Kim, Gyuho;Yoo, Woo Sik
    • Journal of Conservation Science
    • /
    • v.37 no.4
    • /
    • pp.312-321
    • /
    • 2021
  • Underwater archaeology relies heavily on photography and video image recording during surveillances and excavations like ordinary archaeological studies on land. All underwater images suffer poor image quality and distortions due to poor visibility, low contrast and blur, caused by differences in refractive indices of water and air, properties of selected lenses and shapes of viewports. In the Yellow Sea (between mainland China and the Korean peninsula), the visibility underwater is far less than 1 m, typically in the range of 30 cm to 50 cm, on even a clear day, due to very high turbidity. For photographing 1 m x 1 m grids underwater, a very wide view angle (180°) fisheye lens with an 8 mm focal length is intentionally used despite unwanted severe barrel-shaped image distortion, even with a dome port camera housing. It is very difficult to map wide underwater archaeological excavation sites by combining severely distorted images. Development of practical compensation methods for distorted underwater images acquired through the fisheye lens is strongly desired. In this study, the source of image distortion in underwater photography is investigated. We have identified the source of image distortion as the mismatching, in optical axis and focal points, between dome port housing and fisheye lens. A practical image distortion compensation method, using customized image processing software, was explored and verified using archived underwater excavation images for effectiveness in underwater archaeological applications. To minimize unusable area due to severe distortion after distortion compensation, practical underwater photography guidelines are suggested.