• Title/Summary/Keyword: clay soil

Search Result 1,949, Processing Time 0.026 seconds

Investigation of Spudcan Penetration Resistance in Layered Soil Deposits

  • Jan, Muhammad Asad;Nizamani, Zubair Ahmed;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • A suite of 3D large deformation finite element (FE) analyses was performed to investigate the load transfer mechanism and penetration resistance of spudcan foundations in heterogeneous soil profile consisting of sand and clay. The Elasto-Plastic models following Mohr-Coulomb and Tresca failure criteria were adopted for sand and clay, respectively. The accuracy of the numerical model was validated against centrifuge test measurements. The dense sand behavior with dilation is modeled using the non-associated flow rule. An investigation study consisting of key parameters, which includes variation in soil stratigraphy (sand-clay, sand-clay-sand), strength parameters of sand and clay (��' and su) and normalized height ratio of the sand layer (Hs/D) was conducted to assess the penetration behavior of spudcan. Based on calculated outputs, it was demonstrated that these parameters have a significant influence on the penetration resistance of spudcan. The calculated penetration resistance profiles are compared with the published (sand overlying clay) analytical model. It is confirmed that for the case of two-layer soil, the available theoretical model provides an accurate estimate of peak penetration resistance (qpeak). In the case of three-layer soil, the presence of a third stiff layer affects the penetration resistance profile due to the squeezing of the soil.

Effect of Soil Textures on Fruit Yield, Nitrogen and Water Use Efficiencies of Cucumber Plant as Affected by Subsurface Drip Fertigation in the Greenhouse

  • Lim, Tae-Jun;Park, Jin-Myeon;Park, Young-Eun;Lee, Seong-Eun;Kim, Ki-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.372-378
    • /
    • 2015
  • Growing crops under different soil textures may affect crop growth and yield because of soil N availability, soil N leaching, and plant N uptake. The objective of this study was to evaluate effects of three different soils (sandy loam, loam, and clay loam) on cucumber (Cucumis sativus L.) yield, nitrogen (N) use efficiency (NUE), and water use efficiency (WUE) by subsurface drip fertigation in the greenhouse. Three different soil textures are sandy loam, loam, and clay loam with 3 replications. The dimension of each lysimeter was $1.0m(W){\times}1.5m(L){\times}1.0m(H)$. Cucumber was transplanted on April $8^{th}$ and Aug $16^{th}$ in 2011. The subsurface drip line and tensiometer was installed at 30 and 20 cm soil depth, respectively. An irrigation with $100mg\;NL^{-1}$ concentration was automatically applied when the tensiometer reading was 10 kPa. Volumetric soil water content for cucumber cultivation was the highest in 30 cm soil depth regardless of soil texture and was lowered when soil depth was deeper. The volumetric soil water contents at soil depths of 10, 30, 50, and 70 cm were the highest at clay loam, followed by loam, and sandy loam. The growth of cucumber at the $50^{th}$ day after transplanting was the lowest at sandy loam. Cucumber fruit yields were similar for all three soil textures. The highest amount of water use at sandy loam was observed. Nitrogen and water use efficiencies for cucumber were higher for clay loam, followed by loam and sandy loam, while the amount of N leaching was the greatest under sandy loam, followed by loam, and clay loam. Overall, growing cucumber on either loam or clay loam is better than sandy loam if subsurface drip fertigation is used in the greenhouse.

Making Techniques and Provenance Interpretation for Molding Clay of Four-Guardian Statues in Songgwangsa Temple, Suncheon, Korea (순천 송광사 사천왕상 소조토의 제작기법과 원산지 해석)

  • Jo, Young-Hoon;Jo, Seung-Nam;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.26 no.1
    • /
    • pp.43-60
    • /
    • 2010
  • This study was investigated quantitative and objective making techniques for molding clay of Four-guardian statues in Songgwangsa temple. Also, basic data about the provenance of molding clay was acquired for the restoration using same materials when the conservation treatment is carried out. As a result, molding clay used the Four-guardian statues was identified the very similar soil regardless of layers and objects. But molding clay differed in particle sizes and contents of organic matters according to the first layer to finish layer in relatively thick parts. Also, it was used one kind of soil without the layer distinction in thin parts. The restoration soil was applied to genetically similar soil as molding clay of the Four-guardian statues, and showed a difference of careful selection degree according to the layers. As a result of the provenance interpretation, the soil distributing presumed provenance was confirmed the same origin as molding clay. Therefore, the soil is appropriate for the materials of conservation treatment. This result will contribute inorganic material research and conservation treatment for the clay molded Four-guardian statues in Korea.

Behavior of geotextile reinforced flyash + clay-mix by laboratory evaluation

  • Vashi, Jigisha M.;Desai, Atul K.;Solanki, Chandresh H.
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.331-342
    • /
    • 2013
  • The major factors that control the performance of reinforced soil structures is the interaction between the soil and the reinforcement. Thus it is necessary to obtain the accurate bond parameters to be used in the design of these structures. To evaluate the behavior of flyash + clay soil reinforced with a woven geotextile, 36 Unconsolidated-Undrained (UU) and 12 reinforced Consolidated-Undrainrained (CU) triaxial compression tests were conducted. The moisture content of soil during remolding, confining pressures and arrangement of geotextile layers were all varied so that the behavior of the sample could be examined. The stress strain patterns, drainage, modulus of deformation, effect of confinement pressures, effects of moisture content have been evaluated. The impact of moisture content in flyash + clay backfills on critical shear parameters was also studied to recommend placement moisture for compaction to MDD. The results indicate that geotextile reinforced flyash + clay backfill might be a viable alternative in reinforced soil structures if good-quality granular backfill material is not readily available.

EFFECT OF SOIL TEXTURE ON SURFACTANT-BASED REMEDIAT10N OF HYDROPHOBIC ORGANIC-CONTAMINATED SOIL

  • Lee, Dal-Heui;Robert D. Cody;Kim, Dong-Ju
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.22-25
    • /
    • 2001
  • 본 연구는 소수성 유기물로 오염된 토양의 계면 활성제를 이용한 복원에 토양의 조성이 미치는 영향에 대한 것으로서, 토양의 조성에 따른 배치실험 및 주상실험을 실시하였다. 복원 정도는 clay 함량에 따라 대우 달랐으며, clay 함량이 34% 미만일 때 복원율이 높았음을 보여주었다. 또한 clay 함량이 68% 이상일 때에는 복원율이 매우 낮았다.

  • PDF

A Precision Test of Hydrometer Method for Determining Soil Texture (비중계법에 의한 토성분석시 정도 실험)

  • Kim, Lee-Yul;Han, Kyung-Hwa;Cho, Hyun-Jun;Oh, Dong-Shig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.315-320
    • /
    • 2006
  • A precision test of hydrometer method, used to determine soil texture, was conducted on selected 10 soil samples, compared to pipette method. Soil texture measurements with hydrometer method were performed with monitoring the temperature of soil suspension in settling cylinder. The temperature and its fluctuation during settling time had a range of $13^{\circ}C-28^{\circ}C$ and $0.2^{\circ}C-4.4^{\circ}C$, respectively. The difference of clay content between hydrometer and pipette method were distributed from -6.4% to 4.0%. Positive end of difference in clay content was observed at soil having very low clay content, whereas negative end at soil having high organic matter content and exchangeable cations. Except both ends, difference in clay content of soils was less than 3%, and expecially closed to 0% in soils having clay content more than 25%. The difference of sand content were distributed from -1.5% to 4.2%. Similar to clay content, positive end soil was soil sample having lowest sand content.

Individual and combined effect of Portland cement and chemical agents on unconfined compressive strength for high plasticity clayey soils

  • Yilmaz, Yuksel;Eun, Jongwan;Goren, Aysegul
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.375-384
    • /
    • 2018
  • Unconfined compressive strength (UCS) of high plasticity clayey soil mixed with 5 and 10 % of Portland cement and four chemical agents such as sodium hexametaphosphate, aluminum sulfate, sodium carbonate, and sodium silicate with 0, 5, 10, and 20% concentrations was comparatively evaluated. The individual and combined effects of the cement and chemical agents on the UCS of the soil mixture were investigated. The strength of the soil-cement mixture generally increases with increasing the cement content. However, if the chemical agent is added to the mixture, the strength of the cement-chemical agent-soil mixture tends to vary depending on the type and the amount of the chemical agent. At low concentrations of 5% of aluminum sulfate and 5% and 10% of sodium carbonate, the average UCS of the cement-chemical agent-soil mixture slightly increased compared to pure clay due to increasing the flocculation of the clay in the mixture. However, at high concentrations (20%) of all chemical agents, the UCS significantly decreased compared to the pure clay and clay-cement mixtures. In the case of high cement content, the rate of UCS reduction is the highest among all cement-chemical agent-soil mixtures, which is more than three times higher in comparison to the soil-chemical agent mixtures without cement. Therefore, in the mixture with high cement (> 10%), the reduction of the USC is very sensitive when the chemical agent is added.

Development of volume reduction method of cesium contaminated soil with magnetic separation

  • Yukumatsu, Kazuki;Nomura, Naoki;Mishima, Fumihito;Akiyama, Yoko;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.10-13
    • /
    • 2016
  • In this study, we developed a new volume reduction technique for cesium contaminated soil by magnetic separation. Cs in soil is mainly adsorbed on clay which is the smallest particle constituent in the soil, especially on paramagnetic 2:1 type clay minerals which strongly adsorb and fix Cs. Thus selective separation of 2:1 type clay with a superconducting magnet could enable to reduce the volume of Cs contaminated soil. The 2:1 type clay particles exist in various particle sizes in the soil, which leads that magnetic force and Cs adsorption quantity depend on their particle size. Accordingly, we examined magnetic separation conditions for efficient separation of 2:1 type clay considering their particle size distribution. First, the separation rate of 2:1 type clay for each particle size was calculated by particle trajectory simulation, because magnetic separation rate largely depends on the objective size. According to the calculation, 73 and 89 % of 2:1 type clay could be separated at 2 and 7 T, respectively. Moreover we calculated dose reduction rate on the basis of the result of particle trajectory simulation. It was indicated that 17 and 51 % of dose reduction would be possible at 2 and 7 T, respectively. The difference of dose reduction rate at 2 T and 7 T was found to be separated a fine particle. It was shown that magnetic separation considering particle size distribution would contribute to the volume reduction of contaminated soil.

Influence of Physicochemical Properties on Cesium Adsorption onto Soil (토양의 물리화학적 특성이 세슘 흡착에 미치는 영향)

  • Park, Sang-Min;Lee, Jeshin;Kim, Young-Hun;Lee, Jeung-Sun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • Cesium (Cs) generated by nuclear accidents is one of the most hazardous radionuclides because of its gamma radiation and long half-life. Especially, when Cs is exposed on the soil environments, Cs is mainly adsorbed on the topsoil and is strongly combined with tiny soil particle including clay minerals. The adsorption of Cs onto soil can vary depending on various physicochemical properties of soil. In this study, the adsorption characteristics between soil and Cs were investigated according to various physicochemical properties of soil including organic matter contents, cation exchange capacity (CEC), soil particle size, and the types of clay minerals. Soil organic matter inhibited the adsorption of Cs onto the soil because organic matter was blocking the soil surface. In addition, it was estimated that the CEC of the soil influenced the adsorption of Cs onto the soil. Moreover, more Cs was adsorbed as the soil particles size decreased. It was estimated that Cs was mostly adsorbed onto the topsoil, this is related to the clay mineral. Therefore, soil organic matter, CEC, soil particle size, and clay minerals are considered the key factors that can influence the adsorption characteristics between soil and Cs.

Mechanism of strength damage of red clay roadbed by acid rain

  • Guiyuan Xiao;Jian Wang;Le Yin;Guangli Xu;Wei Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.473-480
    • /
    • 2023
  • Acid rain of soils has a significant impact on mechanical properties. An X-ray diffraction test, scanning electron microscope (SEM) test, laser particle size analysis test, and triaxial unconsolidated undrained (UU) test were carried out in red clay soils with different compaction degrees under the effect of different concentrations of acid. The experiments demonstrated that: the dissolution effect of acid rain on colluvium weakened with the increase in the compacting degree under the condition of certain pH values, i.e., the damage to the structure of red clay soil was relatively light, where the number of newly increased pores in the soil decreased and the agglomeration of soil particles increased; for the same compacting degree, the structural gap decreased, and the agglomeration increased with the increase in the pH value (acidity decreases) of the acid rain; the dissolution rate of Si, Al, Fe, and other elemental minerals and cement in red clay soil was found to be higher under the effect of acid rain, in turn destroying the original structure of the soil body and producing a large number of pores. This is macroscopically expressed as the decrease of the soil cohesion and internal friction angle, thereby reducing the shear strength of the soil body.