• Title/Summary/Keyword: clay slope

Search Result 204, Processing Time 0.024 seconds

The Slope Stabilization of Solid Waste Landfill Liner System (폐기물매립장의 사면차수체계 안정화 연구)

  • Shin, Eunchul;Kim, Jongin;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.21-28
    • /
    • 2009
  • As the natural aggregates such as sand and clay are getting exhausted, the quantity of utilizing geosynthetics is being increased in the solid waste landfill. Especially, the waste landfills have been constructed at the gorge in the mountainous area and reclaimed land from the sea in the Korean Peninsula. Those areas are not favorable for construction of waste landfill in geotechnical engineering aspect. In this study, the frictional characteristics of geosynthetics that used in the waste landfill were estimated. Then, the studies of the behavior of geosynthetics and stability of LDCRS (Leachate Detection, Collection, and Removal System) of side slope were conducted in the waste landfill by means of the pilot test, and numerical analysis. Geocomposite which is combined type or separated type is influenced on the strain itself, and also implicated in the stress and strain of geomembrane at the lower layer. The strain on the combined type of geocomposite is about 50% smaller than that of the separated type at the side slope. The lateral displacement and settlement of top at the slope with the separated type are three times greater than that of the combined type. In the numerical analysis, discontinuous plans in between ground and geosynthetic, geosynthetic and geosynthetic, goesynthetic and waste have been modeled with the interface element. The results gave a good agreement with the field large-scale model test. The relative displacements of geosynthetics were also investigated and hence the interface modeling of liner system is appropriate for analysis of geosynthetics liner system in the waste landfill.

  • PDF

Slope Failure Along the Weathered And Mobilized Foliation Plane : Studies for Causes of the Failure and the Supporting Methodologies (풍화된 엽리면을 따라 붕괴된 대절토 사면의 붕괴요인 분석과 보강방안에 대한 연구)

  • Hwang, Sang-Gi;Kim, Young-Muk;Ji, In-Taeg;Jeon, Byoung-Choo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.775-784
    • /
    • 2009
  • Weathered foliation could act as a critical failure plane because this type of plane tend to have low roughness and long extensions. A big constructed slope at $\bigcirc\bigcirc$ road construction site was failed due to the block movement along a fault zone which is parallel to foliation. Tectonic activity reactivated a fault zone parallel to foliation, and the fault clay within the shear zone metamorphosed retrogressively to chrolite. The failed block moved when the block weigh lost the balancing with the resisting force of the retrogressively metamorphosed chrolite. Evaluating the three dimensional distribution of the foliation was critical for establishing a plan for the stabilization of the slope. For this purpose, 10 boreholes were drilled as a lattice distribution, and the BIPS analyses are performed at each boreholes. The fractures measured in the boreholes are projected into 15 cross sections and their distributions are analysed, using Fracjection software. The projection analyse show that the strike of the foliation gets dipper towards left side of the slope. This geometry indicates that there are more failure block geometry at left side of the slope. Potential failure planes are searched using the projection method, and these information are provided for further support design.

  • PDF

Slops Stability Analysis of Carsington Dam (Carsington 댐의 사면안정 해석)

  • 손준익;안상로
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.75-86
    • /
    • 1991
  • In this paper the failure of Carsington Dam was discussed based on the informations reported in the first edition of Korean Geotechnical Society News. The causes of dam failure and its influences were evaluated based on the results of the slope stability analysis. The effects of the shear strain pre-existing in the yellow clay disclosed by the post-failure site investigation and the progressive nature of the dam failure were preponderantly evaluated. Stability analysis was performed based on the proposed values of strength parameters characterizing possible field ground conditions at failure. The calculated safety factors were evaluated for different cases of strength parameters in order to find the most probable field ground condition at the dam failue.

  • PDF

암반공학적 측면에서본 신생대 암반비탈면의 공학적 문제 및 대책

  • Shin, Hee-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.285-289
    • /
    • 2005
  • The Cenozoic Era consists of two period , the Tertiary and the Quaternary Period. Weak rock types may include areas containing: 1) poorly cemented or uncemented sediments, 2) highly weathered rock, or 3) fault lines. Especially this paper deal with poorly cemented or uncemented sedimentary rocks in slope. Mechanical weathering is caused by physical processes such as absorption and release of water, and changes in temperature and stress at or near the exposed rock surface. It results in the opening of discontinuities, the formation of new discontinuities by rock fracture, the opening of grain boundaries, and the fracture or cleavage of individual mineral grains. Decomposition causes some silicate minerals such as feldspars to change to clay minerals. There was a strong negative correlation between water absorption and important engineering properties such as strength and durability.

  • PDF

'Hillslope Erosion Assessment using 137Cs radionuclide in Granite and Sedimentary rock basins in South Korea'

  • Orkhonselenge, A.;Tanaka, Y.;Kim, Song-Hyun;Kim, Yong-Kyun
    • Proceedings of the Korean Quaternary Association Conference
    • /
    • 2005.06a
    • /
    • pp.7-11
    • /
    • 2005
  • The soil erosion processes have estimated using spatial distribution of 137Cs radionuclide in Granite and Sedimentary Hillslopes in South Korea. The local variability of 137Cs inventory indicates that was related positively to organic matter content, clay content and water content and negatively to hydraulic permeability and slope gradient for bulk samples in different landforms within Granite and Sedimentary rock basins. The vertical variability of 137Cs inventory shows that most of 137Cs concentration and organic matter were accumulated between 0 and 2cms and gradually decrease with soil depth in incremental samples in both basins. The vertical variability of 137Cs inventories shows that 137Csinventories increase as we go to toward downslope in both basins. Finally, the soil loss values indicate that hillslope erosion processes are more intensive in Granite rock basin than those in Sedimentary rock basin.

  • PDF

Study on Shear Strength Characteristic of Steel Particle-sand Mixture Influenced by Magnetic Force (자기력이 적용된 철가루 혼합 사질토의 전단강도특성 연구)

  • Cho, Joong-Ki;Chang, Pyeong-Wook;Kim, Seong-Pil;Heo, Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.87-92
    • /
    • 2007
  • Strain-stress behavior of soil is of importance in dealing with geo-techniques which relate to bearing capacity, slope stability, earth pressure and many geo-technical problems. So understanding mechanism of the behavior and reinforcing soil to the required state has been an issue for many years. This paper presents the possibility of magnetic force in enhancing shear strength. To analyze the reinforcing effect, triaxial compression tests were performed on two sets of steel-sand mixtures, one of which is influenced by permanent magnet, NdFeB. With magnetic force under 50 kPa confining pressure, maximum shear strengths increased according to steel percentages but under 100 kPa, no significant changes in maximum shear strengths occurred. Therefore the analysis by Mohr's circles indicates that magnetic force converts the shearing characteristics of sand into those of clay.

Design Forces Acting on Geosynthetics in Landfills (매립장 사면에 설치된 토목섬유의 설계 인장강도 산정)

  • 정문경;김강석;우제윤;류찬희
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.407-414
    • /
    • 2000
  • This paper presents measured deformation of geomembrane installed on slopes of a landfill. The layout of geosynthetics installed on landfill slopes as required by regulations is composed of, in typical, geocomposite, geomembrane, geosynthetic clay liner in turn from the slope. An effort was made to better understand the sources of external forces acting on geosynthetics and their interactions. The results of a field observation indicated that tensile stresses induced on geomebrane were far less in magnitude than predicted by the design method employing mass equilibrium of waste. This was mainly because external forces acting on slopes were not transferred from geocomposite to underlying geomembrane. A simple, but rather rational method for assessing the stability of geosynthetics against tensile stresses was proposed. This method is based on a hypothesis that external forces acting on geosynthetics are the results of downdrag of waste during waste compaction.

  • PDF

Drainage Characteristics of Copper Slag Compaction Pile Installed in Clay Based on the Laboratory Consolidation Model Test (대형압밀시험기를 이용한 동슬래그 다짐말뚝의 배수 특성)

  • 천병식;정헌철;김경민;조한영
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.552-557
    • /
    • 2001
  • Copper slag is the by-producted material on the proceeding of refining the copper. To verify applications of copper slag to vertical drain material can substitute for the sands in ground improvement, laboratory soil tests and consolidation model tests were conducted. The results of consolidation model test was analyzed as the hyperbolic method. The hyperbolic method assumes that the settlement(s) versus time(t) behavior approaches a straight line describes a hyperbolic reaction. The inverse of the slope of the line would then yield the ultimate settlement. Through in this study, copper slag is compatible with vertical drain material as like sands. Copper slag compaction pile promote the consolidation settlement.

  • PDF

USE OF FIBREDRAIN IN DREDGED CLAY RECLAMATION PROJECT

  • Lee, S.L.;Yong, K.Y.;Soehoed A R
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.11a
    • /
    • pp.96-109
    • /
    • 2001
  • Land was reclaimed at the waterfront in the Pluit area of Jakarta for a 90ha residential-cum-recreational development. The reclamation works involve construction of permanent and temporary dykes, fill placement, soil improvement, dredging of internal canals and marina, and construction of canal revetment. The site lies on 16m to 18m thick soft seabed deposits. Settlement of the reclaimed areas will result as a consequence of consolidation of the soft underlying sediments. In order to reduce post-construction settlement to within acceptable levels, a system of vertical drains and preloading was adopted. This paper describes the use of Fibredrain, a prefabricated vertical drain made of jute and coir fibres developed at the National University of Singapore, in the soil improvement works and a secondary use in the construction of perimeter dykes for the reclamation works. The construction of the perimeter dyke must be carried out in such a way that slope stability is on ensured. Bamboo rafts and bamboo clusters with Fibredrain inserted, and stage construction were employed to improve stability during the dyke formation for the Pantai Mutiara project.

  • PDF

The Effect of Al2O3 upon Firing Range of Clay-EAF Dust System Body (Clay-EAF Dust계 소지의 소결온도 범위에 미치는 Al2O3의 영향)

  • 김광수;강승구;이기강;김유택;김영진;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.494-500
    • /
    • 2003
  • The effects of $Al_2$O$_3$ addition upon the sintering range of clay-EAF dust (the specified wastes produced from steel making process) system body which would be used as a constructing bricks were investigated. The slope of apparent density to sintering temperature decreased for Clay-dust body containing 5~15 wt% A1203 sintered at 1200-125$0^{\circ}C$, and the absorption(%) of specimen sintered above 125$0^{\circ}C$ decreased due to the formation of open pores produced by pore bloating. For the specimen without any $Al_2$O$_3$ addition sintered at 1275$^{\circ}C$, the major phase was cristobalite, the small amount of mullite (3Al$_2$O$_3$ 2SiO$_2$) formed and the hematite (Fe$_2$O$_3$) remained. In the Clay-dust system body containing $Al_2$O$_3$ 15 wt%, however, the cristobalite disappeared and the major phase was mullite. Also the part of $Al_2$O$_3$ reacted with hematite to form hercynite (FeAl$_2$O$_4$). From the these results, addition of $Al_2$O$_3$ to Clay-dust system body enlarges a sintering range; decreasing an apparent density and absorption slop to sintering temperature owing to consumption of liquid phase SiO$_2$ at higher temperature and gas-forming component Fe$_2$O$_3$ at reduced atmosphere which would decrease an amount of liquid formed and increase the viscosity of the liquid produced during the sintering process.