• Title/Summary/Keyword: classroom science knowledge

Search Result 154, Processing Time 0.02 seconds

Retail Product Development and Brand Management Collaboration between Industry and University Student Teams (산업여대학학생단대지간적령수산품개발화품패관리협작(产业与大学学生团队之间的零售产品开发和品牌管理协作))

  • Carroll, Katherine Emma
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.3
    • /
    • pp.239-248
    • /
    • 2010
  • This paper describes a collaborative project between academia and industry which focused on improving the marketing and product development strategies for two private label apparel brands of a large regional department store chain in the southeastern United States. The goal of the project was to revitalize product lines of the two brands by incorporating student ideas for new solutions, thereby giving the students practical experience with a real-life industry situation. There were a number of key players involved in the project. A privately-owned department store chain based in the southeastern United States which was seeking an academic partner had recognized a need to update two existing private label brands. They targeted middle-aged consumers looking for casual, moderately priced merchandise. The company was seeking to change direction with both packaging and presentation, and possibly product design. The branding and product development divisions of the company contacted professors in an academic department of a large southeastern state university. Two of the professors agreed that the task would be a good fit for their classes - one was a junior-level Intermediate Brand Management class; the other was a senior-level Fashion Product Development class. The professors felt that by working collaboratively on the project, students would be exposed to a real world scenario, within the security of an academic learning environment. Collaboration within an interdisciplinary team has the advantage of providing experiences and resources beyond the capabilities of a single student and adds "brainpower" to problem-solving processes (Lowman 2000). This goal of improving the capabilities of students directed the instructors in each class to form interdisciplinary teams between the Branding and Product Development classes. In addition, many universities are employing industry partnerships in research and teaching, where collaboration within temporal (semester) and physical (classroom/lab) constraints help to increase students' knowledge and experience of a real-world situation. At the University of Tennessee, the Center of Industrial Services and UT-Knoxville's College of Engineering worked with a company to develop design improvements in its U.S. operations. In this study, Because should be lower case b with a private label retail brand, Wickett, Gaskill and Damhorst's (1999) revised Retail Apparel Product Development Model was used by the product development and brand management teams. This framework was chosen because it addresses apparel product development from the concept to the retail stage. Two classes were involved in this project: a junior level Brand Management class and a senior level Fashion Product Development class. Seven teams were formed which included four students from Brand Management and two students from Product Development. The classes were taught the same semester, but not at the same time. At the beginning of the semester, each class was introduced to the industry partner and given the problem. Half the teams were assigned to the men's brand and half to the women's brand. The teams were responsible for devising approaches to the problem, formulating a timeline for their work, staying in touch with industry representatives and making sure that each member of the team contributed in a positive way. The objective for the teams was to plan, develop, and present a product line using merchandising processes (following the Wickett, Gaskill and Damhorst model) and develop new branding strategies for the proposed lines. The teams performed trend, color, fabrication and target market research; developed sketches for a line; edited the sketches and presented their line plans; wrote specifications; fitted prototypes on fit models, and developed final production samples for presentation to industry. The branding students developed a SWOT analysis, a Brand Measurement report, a mind-map for the brands and a fully integrated Marketing Report which was presented alongside the ideas for the new lines. In future if the opportunity arises to work in this collaborative way with an existing company who wishes to look both at branding and product development strategies, classes will be scheduled at the same time so that students have more time to meet and discuss timelines and assigned tasks. As it was, student groups had to meet outside of each class time and this proved to be a challenging though not uncommon part of teamwork (Pfaff and Huddleston, 2003). Although the logistics of this exercise were time-consuming to set up and administer, professors felt that the benefits to students were multiple. The most important benefit, according to student feedback from both classes, was the opportunity to work with industry professionals, follow their process, and see the results of their work evaluated by the people who made the decisions at the company level. Faculty members were grateful to have a "real-world" case to work with in the classroom to provide focus. Creative ideas and strategies were traded as plans were made, extending and strengthening the departmental links be tween the branding and product development areas. By working not only with students coming from a different knowledge base, but also having to keep in contact with the industry partner and follow the framework and timeline of industry practice, student teams were challenged to produce excellent and innovative work under new circumstances. Working on the product development and branding for "real-life" brands that are struggling gave students an opportunity to see how closely their coursework ties in with the real-world and how creativity, collaboration and flexibility are necessary components of both the design and business aspects of company operations. Industry personnel were impressed by (a) the level and depth of knowledge and execution in the student projects, and (b) the creativity of new ideas for the brands.

Development of Blended Learning Program for CPS (CPS를 위한 Blended Learning 프로그램 개발 - 고등학교 수학내용을 중심으로 -)

  • Kim Young-Mi;Kim Hyang-Sook;Im Sun-Woo
    • Communications of Mathematical Education
    • /
    • v.20 no.3 s.27
    • /
    • pp.407-423
    • /
    • 2006
  • The reason why creativity becomes the important subject in 21th century is that it does an important role which solves many problems surrounding our whole life in this internationalization, globalization, knowledge-information age. But scholars who formerly researched the creativity-field explain the necessity of creativity with the internal and fundamental reasons. That is, scholars say that creative activities produce originative products and originality itself. And it is the root of which will be able to discover meaning of life and it -creativity - is successive activities that is demanded when individual life want to obtain important value by expressing one's inner world to the outside using creative resource. Recently, with the trends of present age and the educational needs, research about creativity is actively carried out and it draws out the results that creativity can be developed and enhanced through education and training. So, now many researches have focused on how to develop the creativity. Investigating those researches, we found that the recent issues of researches on creativity were changing and now they focused on creative instruction methods and behavioral factors. Especially, they were selected as the subject related to the creative education - creative instructional method and program, atmosphere in classroom, and factors of teacher. It means that the past researches which were a little bit conceptive have been changing to material ones which will be able to enhance creativity and its effect. So, in this research, we have developed the program for CPS(Creativity Problem Solving) and verified its effect.

  • PDF

How Do Students Use Conceptual Understanding in the Design of Sensemaking?: Considering Epistemic Criteria for the Generation of Questions and Design of Investigation Processes (중학생의 센스메이킹 설계에서 개념적 이해는 어떻게 활용되는가? -질문 고안과 조사 과정 설계에서 논의된 인식적 준거를 중심으로-)

  • Heesoo Ha
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.6
    • /
    • pp.495-507
    • /
    • 2023
  • Teachers often encounter challenges in supporting students with question generation and the development of investigation plans in sensemaking activities. A primary challenge stems from the ambiguity surrounding how students apply their conceptual understandings in this process. This study aims to explore how students apply their conceptual understandings to generate questions and design investigation processes in a sensemaking activity. Two types of student group activities were identified and examined for comparison: One focused on designing a process to achieve the goal of sensemaking, and the other focused on following the step-by-step scientific inquiry procedures. The design of investigation process in each group was concretized with epistemic criteria used for evaluating the designs. The students' use of conceptual understandings in discussions around each was then examined. The findings reveal three epistemic criteria employed in generating questions and designing investigation processes. First, the students examined the interestingness of natural phenomena, using their conceptual understandings of the structure and function of entities within natural phenomena to identify a target phenomenon. This process involved verifying their existing knowledge to determine the need for new understanding. The second criterion was the feasibility of investigating specific variables with the given resources. Here, the students relied on their conceptual understandings of the structure and function of entities corresponding to each variable to assess whether each variable could be investigated. The third epistemic criterion involved examining whether the factors of target phenomena expressed in everyday terms could be translated into observable variables capable of explaining the phenomena. Conceptual understandings related to the function of entities were used to translate everyday expressions into observable variables and vice versa. The students' conceptual understanding of a comprehensive mechanism was used to connect the elements of the phenomenon and use the elements as potential factors to explain the target phenomenon. In the case where the students focused on carrying out step-by-step procedures, data collection feasibility was the sole epistemic criterion guiding the design. This study contributes to elucidating how the process of a sensemaking activity can be developed in the science classroom and developing conceptual supports for designing sensemaking activities that align with students' perspectives.

Assessing Middle School Students' Understanding of Radiative Equilibrium, the Greenhouse Effect, and Global Warming Through Their Interpretation of Heat Balance Data (열수지 자료 해석에서 드러난 중학생의 복사 평형, 온실 효과, 지구 온난화에 대한 이해)

  • Chung, Sueim;Yu, Eun-Jeong
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.770-788
    • /
    • 2021
  • This study aimed to determine whether middle school students could understand global warming and the greenhouse effect, and explain them in terms of global radiative equilibrium. From July 13 to July 24 in 2021, 118 students in the third grade of middle school, who completed a class module on 'atmosphere and weather', participated in an online assessment consisting of multiple-choice and written answers on radiative equilibrium, the greenhouse effect, and global warming; 97 complete responses were obtained. After analysis, it was found that over half the students (61.9%) correctly described the meaning of radiative equilibrium; however, their explanations frequently contained prior knowledge or specific examples outside of the presented data. The majority of the students (92.8%) knew that the greenhouse effect occurs within Earth's atmosphere, but many (32.0%) thought of the greenhouse effect as a state in which the radiative equilibrium is broken. Less than half the students (47.4%) answered correctly that radiative equilibrium occurs on both Earth and the Moon. Most of the students (69.1%) understood that atmospheric re-radiation is the cause of the greenhouse effect, but few (39.2%) answered correctly that the amount of surface radiation emitted is greater than the amount of solar radiation absorbed by the Earth's surface. In addition, about half the students (49.5%) had a good understanding of the relationship between the increase in greenhouse gases and the absorption of atmospheric gases, and the resulting reradiation to the surface. However, when asked about greenhouse gases increases, their thoughts on surface emissions were very diverse; 14.4% said they increased, 9.3% said there was no change, 7.2% said they decreased, and 18.6% gave no response. Radiation equilibrium, the greenhouse effect, and global warming are a large semantic network connected by the balance and interaction of the Earth system. This can thus serve as a conceptual system for students to understand, apply, and interpret climate change caused by global warming. Therefore, with the current climate change crisis facing mankind, sophisticated program development and classroom experiences should be provided to encourage students to think scientifically and establish scientific concepts based on accurate understanding, with follow-up studies conducted to observe the effects.