• Title/Summary/Keyword: classifier evaluation

Search Result 150, Processing Time 0.021 seconds

AraProdMatch: A Machine Learning Approach for Product Matching in E-Commerce

  • Alabdullatif, Aisha;Aloud, Monira
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.214-222
    • /
    • 2021
  • Recently, the growth of e-commerce in Saudi Arabia has been exponential, bringing new remarkable challenges. A naive approach for product matching and categorization is needed to help consumers choose the right store to purchase a product. This paper presents a machine learning approach for product matching that combines deep learning techniques with standard artificial neural networks (ANNs). Existing methods focused on product matching, whereas our model compares products based on unstructured descriptions. We evaluated our electronics dataset model from three business-to-consumer (B2C) online stores by putting the match products collectively in one dataset. The performance evaluation based on k-mean classifier prediction from three real-world online stores demonstrates that the proposed algorithm outperforms the benchmarked approach by 80% on average F1-measure.

Alzheimer's disease recognition from spontaneous speech using large language models

  • Jeong-Uk Bang;Seung-Hoon Han;Byung-Ok Kang
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.96-105
    • /
    • 2024
  • We propose a method to automatically predict Alzheimer's disease from speech data using the ChatGPT large language model. Alzheimer's disease patients often exhibit distinctive characteristics when describing images, such as difficulties in recalling words, grammar errors, repetitive language, and incoherent narratives. For prediction, we initially employ a speech recognition system to transcribe participants' speech into text. We then gather opinions by inputting the transcribed text into ChatGPT as well as a prompt designed to solicit fluency evaluations. Subsequently, we extract embeddings from the speech, text, and opinions by the pretrained models. Finally, we use a classifier consisting of transformer blocks and linear layers to identify participants with this type of dementia. Experiments are conducted using the extensively used ADReSSo dataset. The results yield a maximum accuracy of 87.3% when speech, text, and opinions are used in conjunction. This finding suggests the potential of leveraging evaluation feedback from language models to address challenges in Alzheimer's disease recognition.

Skin Pigment Recognition using Projective Hemoglobin- Melanin Coordinate Measurements

  • Yang, Liu;Lee, Suk-Hwan;Kwon, Seong-Geun;Song, Ha-Joo;Kwon, Ki-Ryong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1825-1838
    • /
    • 2016
  • The detection of skin pigment is crucial in the diagnosis of skin diseases and in the evaluation of medical cosmetics and hairdressing. Accuracy in the detection is a basis for the prompt cure of skin diseases. This study presents a method to recognize and measure human skin pigment using Hemoglobin-Melanin (HM) coordinate. The proposed method extracts the skin area through a Gaussian skin-color model estimated from statistical analysis and decomposes the skin area into two pigments of hemoglobin and melanin using an Independent Component Analysis (ICA) algorithm. Then, we divide the two-dimensional (2D) HM coordinate into rectangular bins and compute the location histograms of hemoglobin and melanin for all the bins. We label the skin pigment of hemoglobin, melanin, and normal skin on all bins according to the Bayesian classifier. These bin-based HM projective histograms can quantify the skin pigment and compute the standard deviation on the total quantification of skin pigments surrounding normal skin. We tested our scheme using images taken under different illumination conditions. Several cosmetic coverings were used to test the performance of the proposed method. The experimental results show that the proposed method can detect skin pigments with more accuracy and evaluate cosmetic covering effects more effectively than conventional methods.

Development for the Index of an Anesthesia Depth using the Power Spectrum Density Analysis (뇌파 스펙트럼 분석에 의한 마취 심도 지표 개발)

  • Ye, Soo-Young;Baik, Swang-Wan;Kim, Jae-Hyung;Park, Jun-Mo;Jeon, Gye-Rok
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.327-332
    • /
    • 2009
  • In this paper, new index was developed to estimate the depth of anesthesia during general anesthesia using EEG. Analysis of the power spectral density(PSD) of EEG was used to develop new parameters because EEG signal tends to have slow wave during anesthesia. Classifier for index creator was developed by using SEF, BDR and BTR parameters, which are calculated by power spectral density. EEG data were obtained from 7 patients (ASA I, II) during general anesthesia with Sevoflurane. The anesthetic depth evaluation indexes ranged from 0 to 100. The average were $86.05{\pm}10.1$, $36.98{\pm}20.2$, $15.33{\pm}13.6$, $50.87{\pm}16.5$ and $87.72{\pm}11.7$ for the states of pre-operation, induction of anesthesia, operation, awaked and post-operation, respectively. The results show that while the depth of anesthesia was evaluated, more accurate information can be provided for anesthetician.

Performance Evaluation of Multimodal Biometric System for Normalization Methods and Classifiers (균등화 및 분류기에 따른 다중 생체 인식 시스템의 성능 평가)

  • Go, Hyoun-Ju;Woo, Na-Young;Shin, Yong-Nyuo;Kim, Jae-Sung;Kim, Hak-Il;Chun, Myung-Geun
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.4
    • /
    • pp.377-388
    • /
    • 2007
  • In this paper, we propose a multi-modal biometric system based on face, iris and fingerprint recognition system. To effectively aggregate two systems, we use statistical distribution models based on matching values for genuine and impostor, respectively. And then, We performed reveal fusion algorithms including weighted summation, Support Vector Machine(SVM), Fisher discriminant analysis, Bayesian classifier. From the various experiments, we found that the performance of multi-modal biometric system was influenced with the normalization methods and classifiers.

Unified Detection and Tracking of Humans Using Gaussian Particle Swarm Optimization (가우시안 입자 군집 최적화를 이용한 사람의 통합된 검출 및 추적)

  • An, Sung-Tae;Kim, Jeong-Jung;Lee, Ju-Jang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.353-358
    • /
    • 2012
  • Human detection is a challenging task in many fields because it is difficult to detect humans due to their variable appearance and posture. Furthermore, it is also hard to track the detected human because of their dynamic and unpredictable behavior. The evaluation speed of method is also important as well as its accuracy. In this paper, we propose unified detection and tracking method for humans using Gaussian-PSO (Gaussian Particle Swarm Optimization) with the HOG (Histograms of Oriented Gradients) features to achieve a fast and accurate performance. Keeping the robustness of HOG features on human detection, we raise the process speed in detection and tracking so that it can be used for real-time applications. These advantages are given by a simple process which needs just one linear-SVM classifier with HOG features and Gaussian-PSO procedure for the both of detection and tracking.

Design of Fingerprints Identification Based on RBFNN Using Image Processing Techniques (영상처리 기법을 통한 RBFNN 패턴 분류기 기반 개선된 지문인식 시스템 설계)

  • Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1060-1069
    • /
    • 2016
  • In this paper, we introduce the fingerprint recognition system based on Radial Basis Function Neural Network(RBFNN). Fingerprints are classified as four types(Whole, Arch, Right roof, Left roof). The preprocessing methods such as fast fourier transform, normalization, calculation of ridge's direction, filtering with gabor filter, binarization and rotation algorithm, are used in order to extract the features on fingerprint images and then those features are considered as the inputs of the network. RBFNN uses Fuzzy C-Means(FCM) clustering in the hidden layer and polynomial functions such as linear, quadratic, and modified quadratic are defined as connection weights of the network. Particle Swarm Optimization (PSO) algorithm optimizes a number of essential parameters needed to improve the accuracy of RBFNN. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. The performance evaluation of the proposed fingerprint recognition system is illustrated with the use of fingerprint data sets that are collected through Anguli program.

Stress Detection and Classification of Laying Hens by Sound Analysis

  • Lee, Jonguk;Noh, Byeongjoon;Jang, Suin;Park, Daihee;Chung, Yongwha;Chang, Hong-Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.592-598
    • /
    • 2015
  • Stress adversely affects the wellbeing of commercial chickens, and comes with an economic cost to the industry that cannot be ignored. In this paper, we first develop an inexpensive and non-invasive, automatic online-monitoring prototype that uses sound data to notify producers of a stressful situation in a commercial poultry facility. The proposed system is structured hierarchically with three binary-classifier support vector machines. First, it selects an optimal acoustic feature subset from the sound emitted by the laying hens. The detection and classification module detects the stress from changes in the sound and classifies it into subsidiary sound types, such as physical stress from changes in temperature, and mental stress from fear. Finally, an experimental evaluation was performed using real sound data from an audio-surveillance system. The accuracy in detecting stress approached 96.2%, and the classification model was validated, confirming that the average classification accuracy was 96.7%, and that its recall and precision measures were satisfactory.

Evaluation of Histograms Local Features and Dimensionality Reduction for 3D Face Verification

  • Ammar, Chouchane;Mebarka, Belahcene;Abdelmalik, Ouamane;Salah, Bourennane
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.468-488
    • /
    • 2016
  • The paper proposes a novel framework for 3D face verification using dimensionality reduction based on highly distinctive local features in the presence of illumination and expression variations. The histograms of efficient local descriptors are used to represent distinctively the facial images. For this purpose, different local descriptors are evaluated, Local Binary Patterns (LBP), Three-Patch Local Binary Patterns (TPLBP), Four-Patch Local Binary Patterns (FPLBP), Binarized Statistical Image Features (BSIF) and Local Phase Quantization (LPQ). Furthermore, experiments on the combinations of the four local descriptors at feature level using simply histograms concatenation are provided. The performance of the proposed approach is evaluated with different dimensionality reduction algorithms: Principal Component Analysis (PCA), Orthogonal Locality Preserving Projection (OLPP) and the combined PCA+EFM (Enhanced Fisher linear discriminate Model). Finally, multi-class Support Vector Machine (SVM) is used as a classifier to carry out the verification between imposters and customers. The proposed method has been tested on CASIA-3D face database and the experimental results show that our method achieves a high verification performance.

HKIB-20000 & HKIB-40075: Hangul Benchmark Collections for Text Categorization Research

  • Kim, Jin-Suk;Choe, Ho-Seop;You, Beom-Jong;Seo, Jeong-Hyun;Lee, Suk-Hoon;Ra, Dong-Yul
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.3
    • /
    • pp.165-180
    • /
    • 2009
  • The HKIB, or Hankookilbo, test collections are two archives of Korean newswire stories manually categorized with semi-hierarchical or hierarchical category taxonomies. The base newswire stories were made available by the Hankook Ilbo (The Korea Daily) for research purposes. At first, Chungnam National University and KISTI collaborated to manually tag 40,075 news stories with categories by semi-hierarchical and balanced three-level classification scheme, where each news story has only one level-3 category (single-labeling). We refer to this original data set as HKIB-40075 test collection. And then Yonsei University and KISTI collaborated to select 20,000 newswire stories from the HKIB-40075 test collection, to rearrange the classification scheme to be fully hierarchical but unbalanced, and to assign one or more categories to each news story (multi-labeling). We refer to this modified data set as HKIB-20000 test collection. We benchmark a k-NN categorization algorithm both on HKIB-20000 and on HKIB-40075, illustrating properties of the collections, providing baseline results for future studies, and suggesting new directions for further research on Korean text categorization problem.