• Title/Summary/Keyword: classifier evaluation

Search Result 150, Processing Time 0.021 seconds

Evaluation of DoP-CPD Classification Technique and Multi Looking Effects for RADARSAT-2 Images

  • Lee, Kyung-Yup;Oh, Yi-Sok;Kim, Youn-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.329-336
    • /
    • 2012
  • This paper give further assessment on the original DoP-CPD classification scheme. This paper provides some additional comparative study on the DoP-CPD with H/A/alpha classifier in terms of multi look effects and classification performances. The statistics and multi looking effects of the DoP and CPD were analyzed with measured polarimetric SAR data. DoP-CPD is less sensitive to the number of averaging pixels than the entropy-alpha technique. A DoP-CPD diagram with appropriate boundaries between six different classes was then developed based on the data analysis. A polarimetric SAR image DoP-CPD classification technique is verified with C-band polarimetric RADARSAT-2 images.

Evaluation of the Feature Selection function of Latent Semantic Indexing(LSI) Using a kNN Classifier (잠재의미색인(LSI) 기법을 이용한 kNN 분류기의 자질 선정에 관한 연구)

  • Park, Boo-Young;Chung, Young-Mee
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2004.08a
    • /
    • pp.163-166
    • /
    • 2004
  • 텍스트 범주화에 관한 선행연구에서 자주 사용되면서 좋은 성능을 보인 자질 선정 기법은 문헌빈도와 카이제곱 통계량 등이다. 그러나 이들은 단어 자체가 갖고 있는 모호성은 제거하지 못한다는 단점이 있다. 본 연구에서는 kNN 분류기를 이용한 범주화 실험에서 단어간의 상호 관련성이 자동적으로 유도됨으로써 단어 자체 보다는 단어의 개념을 분석하는 잠재의미색인 기법을 자질 선정 방법으로 제안한다.

  • PDF

Performance Evaluation of a Naive Bayesian Classifier using various Feature Selection Methods (자질선정에 따른 Naive Bayesian 분류기의 성능 비교)

  • 국민상;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2000.08a
    • /
    • pp.33-36
    • /
    • 2000
  • 베이즈 확률을 이용한 분류기는 자동분류 초기부터 사용되어 아직까지 이 분야에서 가장 많이 사용되는 분류기 중 하나이다. 본 논문에서는 KTSET 문서에서 임의로 추출한 198건의 정보과학회 관련 논문의 제목 및 초록을 대상으로 베이즈 확률을 이용한 문서의 자동분류 실험을 수행하였으며, 더불어 Naive Bayesian 분류기에 가장 적합한 자질선정 방법을 찾고자 카이제곱 통계량, 상호정보량 및 기대상호정보량, 정보획득량, 역문헌빈도, 역카테고리빈도 등 6가지의 자질선정 기준을 실험하였다. 실험 결과는 카이제곱 통계량을 이용한 분류 실험의 성능이 가장 좋았고, 기대상호정보량과 정보획득량, 역카테고리빈도 또한 자질수에 큰 영향을 받지 않고 비교적 안정적인 성능을 보였다.

  • PDF

Emotional Human Body Recognition by Using Extraction of Human Body from Image (인간의 움직임 추출을 이용한 감정적인 행동 인식 시스템 개발)

  • Song, Min-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.214-216
    • /
    • 2006
  • Expressive face and human body gestures are among the main non-verbal communication channels in human-human interaction. Understanding human emotions through body gesture is one of the necessary skills both for humans and also for the computers to interact with their human counterparts. Gesture analysis is consisted of several processes such as detecting of hand, extracting feature, and recognizing emotions. Skin color information for tracking hand gesture is obtained from face detection region. We have revealed relationships between paricular body movements and specific emotions by using HMM(Hidden Markov Model) classifier. Performance evaluation of emotional human body recognition has experimented.

  • PDF

Empirical Evaluation of Ensemble Approach for Diagnostic Knowledge Management (진단지식관리를 위한 앙상블 기법의 실증적 평가)

  • Ha, Sung-Ho;Zhang, Zhen-Yu
    • The Journal of Information Systems
    • /
    • v.20 no.3
    • /
    • pp.237-255
    • /
    • 2011
  • 지난 수십 년 간 연구자들은 효과적인 진료지원시스템을 개발하기 위해 다양한 도구와 방법론들을 제안하였고 지금도 새로운 방법론과 도구들을 계속적으로 개발하고 있다. 그 중에서 흉통으로 응급실에 내원한 노인환자에 대한 정확한 진단은 중요한 이슈 중의 하나였다. 따라서 많은 연구자들이 의사의 진단 능력을 향상시키기 위한 지능적인 의료의사결정과 시스템 개발에 투신하고 있지만 전통적인 의료시스템에 따른 대부분의 진료의사결정이 단일 분류기(classifier)에 기반하고 있어 만족스런 성능을 보여주지 못하고 있는 것이 현실이다. 따라서 이 논문은 앙상블 전략을 활용하여 의사들이 노인환자들의 흉통을 더 정확하고 빠르게 진단하는데 있어 도움을 줄 수 있게 하였다. 의사결정나무, 인공신경망, SVM 모델을 결합한 앙상블 기법을 실제 응급실에서 수집한 응급실 자료에 적용하였고, 그 결과 단일 분류기를 사용하는 것에 비해 월등히 향상된 진단 성과를 보이는 것을 관찰 할 수 있었다.

Person Tracking by Detection of Mobile Robot using RGB-D Cameras

  • Kim, Young-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.17-25
    • /
    • 2017
  • In this paper, we have implemented a low-cost mobile robot supporting the person tracking by detection using RGB-D cameras and ROS(Robot Operating System) framework. The mobile robot was developed based on the Kobuki mobile base equipped with 2's Kinect devices and a high performance controller. One kinect device was used to detect and track the single person among people in the constrained working area by combining point cloud data filtering & clustering, HOG classifier and Kalman Filter-based estimation successively, and the other to perform the SLAM-based navigation supported in ROS framework. In performance evaluation, the person tracking by detection was proved to be robustly executed in real-time, and the navigation function showed the accuracy with the mean distance error being lower than 50mm. The mobile robot implemented has a significance in using the open-source based, general-purpose and low-cost approach.

Vocabulary Expansion Technique for Advertisement Classification

  • Jung, Jin-Yong;Lee, Jung-Hyun;Ha, Jong-Woo;Lee, Sang-Keun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1373-1387
    • /
    • 2012
  • Contextual advertising is an important revenue source for major service providers on the Web. Ads classification is one of main tasks in contextual advertising, and it is used to retrieve semantically relevant ads with respect to the content of web pages. However, it is difficult for traditional text classification methods to achieve satisfactory performance in ads classification due to scarce term features in ads. In this paper, we propose a novel ads classification method that handles the lack of term features for classifying ads with short text. The proposed method utilizes a vocabulary expansion technique using semantic associations among terms learned from large-scale search query logs. The evaluation results show that our methodology achieves 4.0% ~ 9.7% improvements in terms of the hierarchical f-measure over the baseline classifiers without vocabulary expansion.

Adaptive TCX Windowing Technology for Unified Structure MPEG-D USAC

  • Lee, Tae-Jin;Beack, Seung-Kwon;Kang, Kyeong-Ok;Kim, Whan-Woo
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.474-477
    • /
    • 2012
  • The MPEG-D unified speech and audio coding (USAC) standardization process was initiated by MPEG to develop an audio codec that is able to provide consistent quality for mixed speech and music contents. The current USAC reference model structure consists of frequency domain (FD) and linear prediction domain (LPD) core modules and is controlled using a signal classifier tool. In this letter, we propose an LPD single-mode USAC structure using an adaptive widowing-based transform-coded excitation module. We tested our system using official test items for all mono-evaluation modes. The results of the experiment show that the objective and subjective performances of the proposed single-mode USAC system are better than those of the FD/LPD dual-mode USAC system.

Evaluation of Bayesian Model Averaging (BMA) of Bayesian Network Classifiers (BNCs) on Small Datasets (작은 데이터에 대한 베이지안망 분류기(BNC)의 베이지안 모델 평균화(BMA) 성능 평가)

  • 황규백;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.22-24
    • /
    • 2003
  • 작은 데이터에서 베이지안망 분류기(Bayesian network classifier, BNC)를 학습할 때, 과대적합(overfitting)으로 인한 일반화 성능의 저하가 초래된다 이런 경우, 베이지안 모델 평균화(Bayesian model averaging, BMA)는 모델 자체에 대한 불확실성을 분석 과정에서 고려함으로써, 성능 저하를 피할 수 있는 수단을 제공한다. 본 논문에서는 BNC의 BMA의 작은 데이터에 대한 성능을 평가 및 분석한다. 특히, 노드의 순서에 대한 평균화의 효과가 연구된다. 인공데이터에 대한 실험 결과, 노드의 순서가 BNC의 BMA의 분류 성능에 미치는 영향은 지대하며, 이는 데이터의 크기가 극히 작은 경우의 성능 저하에 직접적인 원인이 된다.

  • PDF

Comparison of Image Classification Performance in Convolutional Neural Network according to Transfer Learning (전이학습에 방법에 따른 컨벌루션 신경망의 영상 분류 성능 비교)

  • Park, Sung-Wook;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1387-1395
    • /
    • 2018
  • Core algorithm of deep learning Convolutional Neural Network(CNN) shows better performance than other machine learning algorithms. However, if there is not sufficient data, CNN can not achieve satisfactory performance even if the classifier is excellent. In this situation, it has been proven that the use of transfer learning can have a great effect. In this paper, we apply two transition learning methods(freezing, retraining) to three CNN models(ResNet-50, Inception-V3, DenseNet-121) and compare and analyze how the classification performance of CNN changes according to the methods. As a result of statistical significance test using various evaluation indicators, ResNet-50, Inception-V3, and DenseNet-121 differed by 1.18 times, 1.09 times, and 1.17 times, respectively. Based on this, we concluded that the retraining method may be more effective than the freezing method in case of transition learning in image classification problem.