• Title/Summary/Keyword: classification trees

Search Result 313, Processing Time 0.022 seconds

Landscape Object Classification and Attribute Information System for Standardizing Landscape BIM Library (조경 BIM 라이브러리 표준화를 위한 조경객체 및 속성정보 분류체계)

  • Kim, Bok-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.103-119
    • /
    • 2023
  • Since the Korean government has decided to apply the policy of BIM (Building Information Modeling) to the entire construction industry, it has experienced a positive trend in adoption and utilization. BIM can reduce workloads by building model objects into libraries that conform to standards and enable consistent quality, data integrity, and compatibility. In the domestic architecture, civil engineering, and the overseas landscape architecture sectors, many BIM library standardization studies have been conducted, and guidelines have been established based on them. Currently, basic research and attempts to introduce BIM are being made in Korean landscape architecture field, but the diffusion has been delayed due to difficulties in application. This can be addressed by enhancing the efficiency of BIM work using standardized libraries. Therefore, this study aims to provide a starting point for discussions and present a classification system for objects and attribute information that can be referred to when creating landscape libraries in practice. The standardization of landscape BIM library was explored from two directions: object classification and attribute information items. First, the Korean construction information classification system, product inventory classification system, landscape design and construction standards, and BIM object classification of the NLA (Norwegian Association of Landscape Architects) were referred to classify landscape objects. As a result, the objects were divided into 12 subcategories, including 'trees', 'shrubs', 'ground cover and others', 'outdoor installation', 'outdoor lighting facility', 'stairs and ramp', 'outdoor wall', 'outdoor structure', 'pavement', 'curb', 'irrigation', and 'drainage' under five major categories: 'landscape plant', 'landscape facility', 'landscape structure', 'landscape pavement', and 'irrigation and drainage'. Next, the attribute information for the objects was extracted and structured. To do this, the common attribute information items of the KBIMS (Korean BIM Standard) were included, and the object attribute information items that vary according to the type of objects were included by referring to the PDT (Product Data Template) of the LI (UK Landscape Institute). As a result, the common attributes included information on 'identification', 'distribution', 'classification', and 'manufacture and supply' information, while the object attributes included information on 'naming', 'specifications', 'installation or construction', 'performance', 'sustainability', and 'operations and maintenance'. The significance of this study lies in establishing the foundation for the introduction of landscape BIM through the standardization of library objects, which will enhance the efficiency of modeling tasks and improve the data consistency of BIM models across various disciplines in the construction industry.

Application of Spatial Analysis Modeling to Evaluating Functional Suitability of Forest Lands against Land Slide Hazards (공간분석(空間分析)모델링에 의한 산지(山地)의 토사붕괴방재기능(土砂崩壞防災機能) 적합도(適合度) 평가(評價))

  • Chung, Joosang;Kim, Hyungho;Cha, Jaemin
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.4
    • /
    • pp.535-542
    • /
    • 2001
  • The objective of this study is to develop a spatial analysis modeling technique to evaluate the functional suitability of forest lands for land slide prevention. The functional suitability is classified into 3 categories of high, medium and low according to the potential of land slide on forest lands. The potential of land slide hazards is estimated using the measurements of 7 major site factors : slope, bed rock, soil depth, shape of slope, forest type and D.B.H. class of trees. The analytic hierarchical process is applied to determining the relative weight of site factors in estimating the potential of land slides. The spatial analysis modeling starts building base layers for the 7 major site factors by $25m{\times}25m$ grid analysis or TIN analysis, reclassifies them and produces new layers containing standardized attribute values, needed in estimating land slide potential. To these attributes, applied is the weight for the corresponding site factor to build the suitability classification map by map algebra analysis. Then, finally, cell-grouping operations convert the suitability classification map to the land unit function map. The whole procedures of the spatial analysis modeling are presented in this paper.

  • PDF

Development of Knee Pain Diagnosis Questionnaire and Clinical Study of Diagnostic Correspondent Rate (슬통 진단용 설문지개발 및 진단 일치도 평가연구)

  • Hwang, Ji-Hoo;Kim, Yu-Jong;Kim, Eun-Jung;Lee, Cham-Kyul;Lee, Eun-Yong;Lee, Seung-Deok;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.29 no.5
    • /
    • pp.61-74
    • /
    • 2012
  • Objectives : This study is perfomed for preparation of oriental medicine clinical guidelines for drawing up the standards of oriental medicine demonstration and diagnosis classification about the knee pain. Methods : Statistical analysis about Crane's-knee wind(鶴膝風), arthralgia syndrome(痺症), knee injury(膝傷), gout arthritis(痛風), Youk jeol poung(歷節風) classified experts' opinions about knee pain patients by Delphi method is conducted by using oriental medicine diagnosis questionnaire. The result was classified by using linear discriminant analysis(LDA), diagonal linear discriminant analysis(DLDA), diagonal quadratic discriminant analysis(DQDA), K-nearest neighbor classification(KNN), classification and regression trees(CART), support vector machines(SVM). Results : The results are summarized as follows. 1. The result analyzed by using LDA has a hit rate of 81.65% in comparison with the original diagnosis. 2. The result analyzed by using DLDA has a hit rate of 63.3% in comparison with the original diagnosis. 3. The result analyzed by using DQDA has a hit rate of 65.14% in comparison with the original diagnosis. 4. The result analyzed by using KNN has a hit rate of 74.31% in comparison with the original diagnosis. 5. The result analyzed by using CART has a hit rate of 75.23% in comparison with the original diagnosis when the test of selected 13 significant questions based on analysis of variance was performed. 6. The result analyzed by using SVM has a hit rate of 87.16% in comparison with the original diagnosis. Conclusions : Statistical analysis using oriental medicine diagnosis questionnaire on knee pain generally turned out to have a significant result.

Analysis of Leaf Node Ranking Methods for Spatial Event Prediction (의사결정트리에서 공간사건 예측을 위한 리프노드 등급 결정 방법 분석)

  • Yeon, Young-Kwang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.101-111
    • /
    • 2014
  • Spatial events are predictable using data mining classification algorithms. Decision trees have been used as one of representative classification algorithms. And they were normally used in the classification tasks that have label class values. However since using rule ranking methods, spatial prediction have been applied in the spatial prediction problems. This paper compared rule ranking methods for the spatial prediction application using a decision tree. For the comparison experiment, C4.5 decision tree algorithm, and rule ranking methods such as Laplace, M-estimate and m-branch were implemented. As a spatial prediction case study, landslide which is one of representative spatial event occurs in the natural environment was applied. Among the rule ranking methods, in the results of accuracy evaluation, m-branch showed the better accuracy than other methods. However in case of m-brach and M-estimate required additional time-consuming procedure for searching optimal parameter values. Thus according to the application areas, the methods can be selectively used. The spatial prediction using a decision tree can be used not only for spatial predictions, but also for causal analysis in the specific event occurrence location.

Classification of Local Climate Zone by Using WUDAPT Protocol - A Case Study of Seoul, Korea - (WUDAPT Protocol을 활용한 Local Climate Zone 분류 - 서울특별시를 사례로 -)

  • Kim, Kwon;Eum, Jeong-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.4
    • /
    • pp.131-142
    • /
    • 2017
  • This study aims to create a Local Climate Zone(LCZ) map of Seoul by using World Urban Database and Access Portal Tools(WUDAPT) protocol, and to analyze the characteristics of the Seoul LCZs. For this purpose, training samples of 17 LCZ types were collected by using Landsat images and Google Earth. LCZ Classification and Filtering were performed by SAGA GIS. An ArcGIS was used to analyze the characteristics of each LCZ type. The characteristics of the LCZ types were analyzed by focusing on building surface fraction ratio, impervious surface fraction ratio, pervious surface fraction ratio, building stories and air temperature. The results show that one filtering was found to be most appropriate. While Yangcheongu and Yeongdeungpogu with the higher annual and maximum mean air temperature than other areas have the higher rate of LCZ 3(compact low-rise) and LCZ 4(open high-rise), Jongnogu, Eunpyeonggu, Nowongu and Gwanakgu with the lower value have the higher rate of LCZ A(Dence trees). The values of building surface fraction ratio, impervious surface fraction ratio and building stories of each LCZ were included in the range of WUDAPT for most LCZs. However, the values of pervious surface fraction ratio were out of the range, in particular, in the LCZs 4~6 and 9~10. This study shows the usability and applicability of the WUDAPT methodology and its climate zone classification used in many countries as a basic data for the landscape planning and policy to improve the thermal environment in urban areas.

Classification of Very High Concerns HRCT Images using Extended Bayesian Networks (확장 베이지안망을 적용한 고위험성 HRCT 영상 분류)

  • Lim, Chae-Gyun;Jung, Yong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.7-12
    • /
    • 2012
  • Recently the medical field to efficiently process the vast amounts of information to decision trees, neural networks, Bayesian Networks, including the application method of various data mining techniques are investigated. In addition, the basic personal information or patient history, family history, in addition to information such as MRI, HRCT images and additional information to collect and leverage in the diagnosis of disease, improved diagnostic accuracy is to promote a common status. But in real world situations that affect the results much because of the variable exists for a particular data mining techniques to obtain information through the enemy can be seen fairly limited. Medical images were taken as well as a minor can not give a positive impact on the diagnosis, but the proportion increased subjective judgments by the automated system is to deal with difficult issues. As a result of a complex reality, the situation is more advantageous to deal with the relative probability of the multivariate model based on Bayesian network, or TAN in the K2 search algorithm improves due to expansion model has been proposed. At this point, depending on the type of search algorithm applied significantly influenced the performance characteristics of the extended Bayesian network, the performance and suitability of each technique for evaluation of the facts is required. In this paper, we extend the Bayesian network for diagnosis of diseases using the same data were carried out, K2, TAN and changes in search algorithms such as classification accuracy was measured. In the 10-fold cross-validation experiment was performed to compare the performance evaluation based on the analysis and the onset of high-risk classification for patients with HRCT images could be possible to identify high-risk data.

Performance Evaluations for Leaf Classification Using Combined Features of Shape and Texture (형태와 텍스쳐 특징을 조합한 나뭇잎 분류 시스템의 성능 평가)

  • Kim, Seon-Jong;Kim, Dong-Pil
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • There are many trees in a roadside, parks or facilities for landscape. Although we are easily seeing a tree in around, it would be difficult to classify it and to get some information about it, such as its name, species and surroundings of the tree. To find them, you have to find the illustrated books for plants or search for them on internet. The important components of a tree are leaf, flower, bark, and so on. Generally we can classify the tree by its leaves. A leaf has the inherited features of the shape, vein, and so on. The shape is important role to decide what the tree is. And texture included in vein is also efficient feature to classify them. This paper evaluates the performance of a leaf classification system using both shape and texture features. We use Fourier descriptors for shape features, and both gray-level co-occurrence matrices and wavelets for texture features, and used combinations of such features for evaluation of images from the Flavia dataset. We compared the recognition rates and the precision-recall performances of these features. Various experiments showed that a combination of shape and texture gave better results for performance. The best came from the case of a combination of features of shape and texture with a flipped contour for a Fourier descriptor.

An Exploratory Study on the Effect of LCZ Type on Particulate Matter (LCZ 유형이 미세먼지에 미치는 영향에 관한 탐색적 연구)

  • Yeonju Kim;Hansol Mun;Juchul Jung
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.338-352
    • /
    • 2023
  • As of 2019, Korea's fine dust is the most severe among 38 OECD countries, and in the same year, 「the Framework on Disaster and Safety Management」 was revised to define fine dust as a social disaster. Currently, the government is working to achieve its emission reduction goals by preparing a comprehensive fine dust management plan (2022-2023) consisting of a total of five areas, 42 tasks, and 177 detailed tasks. However, it is necessary to come up with measures in consideration of the various spatial characteristics of the city, not just as a source of emission. Therefore, in this study, the shape of the city was classified using the LCZ (Local Climate Zone) classification system into 17 types by building type and land cover type in Busan, and the average annual PM10 and PM2.5 concentration were mapped using the IDW technique. In addition, Fragstats and Moving Window were used to quantify the LCZ classification system. Finally, correlation analysis and regression analysis were conducted to analyze the relationship between the LCZ classification system and PM10 and PM2.5. As a result, it was confirmed that the type of low height of the building and the type of green space with trees had a positive effect on the concentration of PM10 and PM2.5. Therefore, this study is expected to be used as basic data to establish fine dust reduction policies based on efficient spatial planning.

Application study of random forest method based on Sentinel-2 imagery for surface cover classification in rivers - A case of Naeseong Stream - (하천 내 지표 피복 분류를 위한 Sentinel-2 영상 기반 랜덤 포레스트 기법의 적용성 연구 - 내성천을 사례로 -)

  • An, Seonggi;Lee, Chanjoo;Kim, Yongmin;Choi, Hun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.321-332
    • /
    • 2024
  • Understanding the status of surface cover in riparian zones is essential for river management and flood disaster prevention. Traditional survey methods rely on expert interpretation of vegetation through vegetation mapping or indices. However, these methods are limited by their ability to accurately reflect dynamically changing river environments. Against this backdrop, this study utilized satellite imagery to apply the Random Forest method to assess the distribution of vegetation in rivers over multiple years, focusing on the Naeseong Stream as a case study. Remote sensing data from Sentinel-2 imagery were combined with ground truth data from the Naeseong Stream surface cover in 2016. The Random Forest machine learning algorithm was used to extract and train 1,000 samples per surface cover from ten predetermined sampling areas, followed by validation. A sensitivity analysis, annual surface cover analysis, and accuracy assessment were conducted to evaluate their applicability. The results showed an accuracy of 85.1% based on the validation data. Sensitivity analysis indicated the highest efficiency in 30 trees, 800 samples, and the downstream river section. Surface cover analysis accurately reflects the actual river environment. The accuracy analysis identified 14.9% boundary and internal errors, with high accuracy observed in six categories, excluding scattered and herbaceous vegetation. Although this study focused on a single river, applying the surface cover classification method to multiple rivers is necessary to obtain more accurate and comprehensive data.

An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems (비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형)

  • Lee, Hyeon-Uk;Kim, Ji-Hun;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2012
  • These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.