• Title/Summary/Keyword: classification rules

Search Result 513, Processing Time 0.027 seconds

DCClass: a Tool to Extract Human Understandable Fuzzy Information Granules for Classification

  • Castellano, Giovanna;Fanelli, Anna M.;Mencar, Corrado
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.376-379
    • /
    • 2003
  • In this paper we describe DCClass, a tool for fuzzy information granulation with transparency constraints. The tool is particularly suited to solve fuzzy classification problems, since it is able to automatically extract information granules with class labels. For transparency pursuits, the resulting information granules are represented in form of fuzzy Cartesian product of one-dimensional fuzzy sets. As a key feature, the proposed tool is capable to self-determining the optimal granularity level of each one-dimensional fuzzy set by exploiting class information. The resulting fun information granules can be directly translated in human-comprehensible fuzzy rules to be used for class inference. The paper reports preliminary experimental results on a medical diagnosis problem that shows the utility of the proposed tool.

  • PDF

Pattern Classification Method using SOFM and Multilayer Neural Network (SOFM과 다층신경회로망을 이용한 패턴 분류 방식)

  • 박진성;공휘식;이현관;김주웅;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.296-300
    • /
    • 2002
  • We proposed a method of a pattern classification using unsupervised teaming rules, SOFM, and supervised teaming rules, Multilayer neural network. Establish result that classify and get input pattern using SOFM by initial weighting vector of Multilayer neural network and target value. Got superior Performance as result that do simulation about face image to confirm usefulness of way that propose.

  • PDF

A Construction of Fuzzy Model for Data Mining (데이터 마이닝을 위한 퍼지 모델 동정)

  • Kim, Do-Wan;Park, Jin-Bae;Kim, Jung-Chan;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.191-194
    • /
    • 2002
  • In this paper, a new GA-based methodology with information granules is suggested for construction of the fuzzy classifier. We deal with the selection of the fuzzy region as well as two major classification problems-the feature selection and the pattern classification. The proposed method consists of three steps: the selection of the fuzzy region, the construction of the fuzzy sets, and the tuning of the fuzzy rules. The genetic algorithms (GAs) are applied to the development of the information granules so as to decide the satisfactory fuzzy regions. Finally, the GAs are also applied to the tuning procedure of the fuzzy rules in terms of the management of the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example-the classification of the Iris data, is provided.

An E-Mail Recommendation System using Semi-Automatic Method (반자동 방식을 이용한 이메일 추천 시스템)

  • Jeong, Ok-Ran;Jo, Dong-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.604-607
    • /
    • 2003
  • Most recommendation systems recommend the products or other information satisfying preferences of users on the basis of the users' previous profile information and other information related to product searches and purchase of users visiting web sites. This study aims to apply these application categories to e-mail more necessary to users. The E-Mail System has the strong personality so that there will be some problems even if e-mails are automatically classified by category through the learning on the basis of the personal rules. In consideration with this aspect, we need the semi-automatic system enabling both automatic classification and recommendation method to enhance the satisfaction of users. Accordingly, this paper uses two approaches as the solution against the misclassification that the users consider as the accuracy of classification itself using the dynamic threshold in Bayesian Learning Algorithm and the second one is the methodological approach using the recommendation agent enabling the users to make the final decision.

  • PDF

Evaluation Method of College English Education Effect Based on Improved Decision Tree Algorithm

  • Dou, Fang
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.500-509
    • /
    • 2022
  • With the rapid development of educational informatization, teaching methods become diversified characteristics, but a large number of information data restrict the evaluation on teaching subject and object in terms of the effect of English education. Therefore, this study adopts the concept of incremental learning and eigenvalue interval algorithm to improve the weighted decision tree, and builds an English education effect evaluation model based on association rules. According to the results, the average accuracy of information classification of the improved decision tree algorithm is 96.18%, the classification error rate can be as low as 0.02%, and the anti-fitting performance is good. The classification error rate between the improved decision tree algorithm and the original decision tree does not exceed 1%. The proposed educational evaluation method can effectively provide early warning of academic situation analysis, and improve the teachers' professional skills in an accelerated manner and perfect the education system.

A Sparse Target Matrix Generation Based Unsupervised Feature Learning Algorithm for Image Classification

  • Zhao, Dan;Guo, Baolong;Yan, Yunyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2806-2825
    • /
    • 2018
  • Unsupervised learning has shown good performance on image, video and audio classification tasks, and much progress has been made so far. It studies how systems can learn to represent particular input patterns in a way that reflects the statistical structure of the overall collection of input patterns. Many promising deep learning systems are commonly trained by the greedy layerwise unsupervised learning manner. The performance of these deep learning architectures benefits from the unsupervised learning ability to disentangling the abstractions and picking out the useful features. However, the existing unsupervised learning algorithms are often difficult to train partly because of the requirement of extensive hyperparameters. The tuning of these hyperparameters is a laborious task that requires expert knowledge, rules of thumb or extensive search. In this paper, we propose a simple and effective unsupervised feature learning algorithm for image classification, which exploits an explicit optimizing way for population and lifetime sparsity. Firstly, a sparse target matrix is built by the competitive rules. Then, the sparse features are optimized by means of minimizing the Euclidean norm ($L_2$) error between the sparse target and the competitive layer outputs. Finally, a classifier is trained using the obtained sparse features. Experimental results show that the proposed method achieves good performance for image classification, and provides discriminative features that generalize well.

Rough Set-Based Approach for Automatic Emotion Classification of Music

  • Baniya, Babu Kaji;Lee, Joonwhoan
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.400-416
    • /
    • 2017
  • Music emotion is an important component in the field of music information retrieval and computational musicology. This paper proposes an approach for automatic emotion classification, based on rough set (RS) theory. In the proposed approach, four different sets of music features are extracted, representing dynamics, rhythm, spectral, and harmony. From the features, five different statistical parameters are considered as attributes, including up to the $4^{th}$ order central moments of each feature, and covariance components of mutual ones. The large number of attributes is controlled by RS-based approach, in which superfluous features are removed, to obtain indispensable ones. In addition, RS-based approach makes it possible to visualize which attributes play a significant role in the generated rules, and also determine the strength of each rule for classification. The experiments have been performed to find out which audio features and which of the different statistical parameters derived from them are important for emotion classification. Also, the resulting indispensable attributes and the usefulness of covariance components have been discussed. The overall classification accuracy with all statistical parameters has recorded comparatively better than currently existing methods on a pair of datasets.

Rule Weight-Based Fuzzy Classification Model for Analyzing Admission-Discharge of Dyspnea Patients (호흡곤란환자의 입-퇴원 분석을 위한 규칙가중치 기반 퍼지 분류모델)

  • Son, Chang-Sik;Shin, A-Mi;Lee, Young-Dong;Park, Hyoung-Seob;Park, Hee-Joon;Kim, Yoon-Nyun
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.40-49
    • /
    • 2010
  • A rule weight -based fuzzy classification model is proposed to analyze the patterns of admission-discharge of patients as a previous research for differential diagnosis of dyspnea. The proposed model is automatically generated from a labeled data set, supervised learning strategy, using three procedure methodology: i) select fuzzy partition regions from spatial distribution of data; ii) generate fuzzy membership functions from the selected partition regions; and iii) extract a set of candidate rules and resolve a conflict problem among the candidate rules. The effectiveness of the proposed fuzzy classification model was demonstrated by comparing the experimental results for the dyspnea patients' data set with 11 features selected from 55 features by clinicians with those obtained using the conventional classification methods, such as standard fuzzy classifier without rule weights, C4.5, QDA, kNN, and SVMs.

An Example-based Korean Standard Industrial and Occupational Code Classification (예제기반 한국어 표준 산업/직업 코드 분류)

  • Lim Heui-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.594-601
    • /
    • 2006
  • Coding of occupational and industrial codes is a major operation in census survey of Korean statistics bureau. The coding process has been done manually. Such manual work is very labor and cost intensive and it usually causes inconsistent results. This paper proposes an automatic coding system based on example-based learning. The system converts natural language input into corresponding numeric codes using code generation system trained by example-based teaming after applying manually built rules. As experimental results performed with training data consisted of 400,000 records and 260 manual rules, the proposed system showed about 76.69% and 99.68% accuracy for occupational code classification and industrial code classification, respectively.

  • PDF

Identifying Classes for Classification of Potential Liver Disorder Patients by Unsupervised Learning with K-means Clustering (K-means 클러스터링을 이용한 자율학습을 통한 잠재적간 질환 환자의 분류를 위한 계층 정의)

  • Kim, Jun-Beom;Oh, Kyo-Joong;Oh, Keun-Whee;Choi, Ho-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.195-197
    • /
    • 2011
  • This research deals with an issue of preventive medicine in bioinformatics. We can diagnose liver conditions reasonably well to prevent Liver Cirrhosis by classifying liver disorder patients into fatty liver and high risk groups. The classification proceeds in two steps. Classification rules are first built by clustering five attributes (MCV, ALP, ALT, ASP, and GGT) of blood test dataset provided by the UCI Repository. The clusters can be formed by the K-mean method that analyzes multi dimensional attributes. We analyze the properties of each cluster divided into fatty liver, high risk and normal classes. The classification rules are generated by the analysis. In this paper, we suggest a method to diagnosis and predict liver condition to alcoholic patient according to risk levels using the classification rule from the new results of blood test. The K-mean classifier has been found to be more accurate for the result of blood test and provides the risk of fatty liver to normal liver conditions.