• 제목/요약/키워드: classification learning

검색결과 3,326건 처리시간 0.029초

Spine Computed Tomography to Magnetic Resonance Image Synthesis Using Generative Adversarial Networks : A Preliminary Study

  • Lee, Jung Hwan;Han, In Ho;Kim, Dong Hwan;Yu, Seunghan;Lee, In Sook;Song, You Seon;Joo, Seongsu;Jin, Cheng-Bin;Kim, Hakil
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권3호
    • /
    • pp.386-396
    • /
    • 2020
  • Objective : To generate synthetic spine magnetic resonance (MR) images from spine computed tomography (CT) using generative adversarial networks (GANs), as well as to determine the similarities between synthesized and real MR images. Methods : GANs were trained to transform spine CT image slices into spine magnetic resonance T2 weighted (MRT2) axial image slices by combining adversarial loss and voxel-wise loss. Experiments were performed using 280 pairs of lumbar spine CT scans and MRT2 images. The MRT2 images were then synthesized from 15 other spine CT scans. To evaluate whether the synthetic MR images were realistic, two radiologists, two spine surgeons, and two residents blindly classified the real and synthetic MRT2 images. Two experienced radiologists then evaluated the similarities between subdivisions of the real and synthetic MRT2 images. Quantitative analysis of the synthetic MRT2 images was performed using the mean absolute error (MAE) and peak signal-to-noise ratio (PSNR). Results : The mean overall similarity of the synthetic MRT2 images evaluated by radiologists was 80.2%. In the blind classification of the real MRT2 images, the failure rate ranged from 0% to 40%. The MAE value of each image ranged from 13.75 to 34.24 pixels (mean, 21.19 pixels), and the PSNR of each image ranged from 61.96 to 68.16 dB (mean, 64.92 dB). Conclusion : This was the first study to apply GANs to synthesize spine MR images from CT images. Despite the small dataset of 280 pairs, the synthetic MR images were relatively well implemented. Synthesis of medical images using GANs is a new paradigm of artificial intelligence application in medical imaging. We expect that synthesis of MR images from spine CT images using GANs will improve the diagnostic usefulness of CT. To better inform the clinical applications of this technique, further studies are needed involving a large dataset, a variety of pathologies, and other MR sequence of the lumbar spine.

선형 강도 교정을 이용한 라만 스펙트럼 인식 (The identification of Raman spectra by using linear intensity calibration)

  • 박준규;백성준;박아론
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.32-39
    • /
    • 2018
  • 라만 스펙트럼은 측정 장비 및 환경 조건에 따라 동일한 물질이라도 스펙트럼의 강도 차이를 보인다. 이는 라만 분광의 패턴 인식적인 접근에 제약을 주기 때문에 장비간의 호환성 및 라만 데이터베이스의 재사용을 위해 반드시 해결해야 하는 문제다. 이를 위해 이전의 주요 연구들에서는 측정 장비 간에 전달 함수를 가정하고 이를 구한 후 직접적인 스펙트럼의 교정을 수행하였다. 하지만 이 방식은 강도 왜곡을 발생시키는 다른 조건들에 대해서는 대처 할 수 없는 방법이다. 따라서 본 논문에서는 다양한 측정 조건에 보다 유연하게 대응 할 수 있는 선형 강도 교정을 이용한 분류 방법을 제안하였다. 제안한 방법의 성능 평가를 위해 실험에서는 14033종의 화학 물질에서 측정된 라만 라이브러리를 실험물질에 대한 판별 지표로 사용하였으며, 3개의 라만 분광기로부터 측정된 10종의 화학 물질 라만 스펙트럼을 실험 데이터로 사용하였다. 실험결과에 따르면 제안한 방법을 사용하였을 때 강도 왜곡된 스펙트럼에 대해 100%의 판별 성능을 보였으며, 판별된 스펙트럼에 대해서도 이전보다 높은 상관점수를 보여 사용자가 화학 물질을 판별하는 데 유용한 도구로 사용될 수 있음을 확인하였다.

광고 글 필터링 모델 적용 및 성능 향상 방안 (Application of Advertisement Filtering Model and Method for its Performance Improvement)

  • 박래근;윤혁진;신의철;안영진;정승도
    • 한국산학기술학회논문지
    • /
    • 제21권11호
    • /
    • pp.1-8
    • /
    • 2020
  • 최근 기하급수적인 인터넷 데이터의 증가로 딥러닝 등의 많은 분야가 발전하였지만 바이럴 마케팅(viral marketing)과 같은 상업적 목적의 광고가 발견되면서 정보증가의 부작용이 발생하고 있다. 이는 양질의 정보를 공유하고자 하는 인터넷의 본질을 훼손하고 있을 뿐만 아니라 사용자는 양질의 정보를 습득하기 위해 검색시간이 증가하는 문제가 야기된다. 이에 본 연구에서는 광고(Ad: Advertisement, 이하 Ad) 글을 정보 전달의 본질을 흐리는 내용의 글이라 정의하였으며 본 정의에 부합하는 정보로 필터링하는 모델을 제안하였다. 제안하는 모델은 광고 필터링 경로와 광고 필터링 성능 개선경로로 구성되었으며 지속적으로 성능이 개선되도록 설계하였다. 광고 글 필터링을 위해 데이터를 수집하고 KorBERT를 사용하여 문서분류를 학습하였다. 본 모델의 성능을 검증하기 위해 실험을 진행하였으며 5개의 주제를 통합한 데이터에 대한 정확도(Accuracy), 정밀도(Precision)는 각각 89.2%, 84.3%의 결과를 나타냈고 광고의 비정형적 특성을 고려하더라도 높은 성능이 보임을 확인하였다. 본 모델을 통해 바이럴 마케팅으로 구성된 문서에서 광고 문단을 판단하고 필터링하여 사용자에게 양질의 정보를 효과적으로 전달하며 검색하는 과정에서 낭비되는 시간과 피로가 감소할 것으로 기대된다.

머신러닝 기반의 자동화된 소스 싱크 분류 및 하이브리드 분석을 통한 개인정보 유출 탐지 방법 (Machine Learning Based Automated Source, Sink Categorization for Hybrid Approach of Privacy Leak Detection)

  • 심현석;정수환
    • 정보보호학회논문지
    • /
    • 제30권4호
    • /
    • pp.657-667
    • /
    • 2020
  • 안드로이드 프레임워크는 단 한번의 권한 허용을 통해 앱이 사용자의 정보를 자유롭게 이용할 수 있으며, 유출되는 데이터가 개인정보임을 식별하기 어렵다는 문제가 있다. 따라서 본 논문에서는 어플리케이션을 통해 유출되는 데이터를 분석하여, 해당 데이터가 실제로 개인정보에 해당하는 것인지를 파악하는 기준을 제시한다. 이를 위해 우리는 제어 흐름 그래프를 기반으로 소스와 싱크를 추출하며, 소스에서 싱크까지의 흐름이 존재하는 경우 사용자의 개인정보를 유출하는지 확인한다. 이 과정에서 우리는 구글에서 제공하는 위험한 권한 정보를 기준으로 개인정보와 직결되는 소스와 싱크를 선별하며, 동적분석 툴을 통해 각 API에 대한 정보를 후킹한다. 후킹되는 데이터를 통해 사용자는 해당 어플리케이션이 실제로 개인정보를 유출한다면 어떤 개인정보를 유출하는지 여부를 파악할 수 있다. 우리는 툴을 최신 버전의 API에 적용하기 위해 머신러닝을 통해 최신 버전의 안드로이드의 소스와 싱크를 분류하였으며, 이를 통해 86%의 정확도로 최신 배포 버전인 9.0 안드로이드의 API를 분류하였다. 또한 툴은 2,802개의 APK를 통해 평가되었으며, 개인정보를 유출하는 850개의 APK를 탐지하였다.

PFCM 클러스터링 기법의 개선 (Improvement of the PFCM(Possibilistic Fuzzy C-Means) Clustering Method)

  • 허경용;최세운;우영운
    • 한국정보통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.177-185
    • /
    • 2009
  • 클러스터링은 주어진 데이터 포인트들을 주어진 개수의 그룹으로 나누는 비지도 학습의 한 방법이다. 클러스터링의 방법 중 하나로 널리 알려진 퍼지 클러스터링은 하나의 포인트가 모든 클러스터에 서로 다른 정도로 소속될 수 있도록 함으로써 하나의 클러스터에만 속할 수 있도록 하는 K-means와 같은 방법에 비해 자연스러운 클러스터 형태의 유추가 가능하고, 잡음에 강한 장점이 있다. 이 논문에서는 기존의 퍼지 클러스터링 방법 중 소속도(membership)와 전형성(typicality)을 동시에 계산해 낼 수 있는 Possibilistic Fuzzy C-Means(PFCM) 방법에 Gath-Geva(CG)의 방법을 적용하여 PFCM을 개선한다. 제안한 방법은 PFCM 장점을 그대로 가지면서도, GG의 거리 척도에 의해 클러스터들 사이의 경계를 강조함으로써 분류 목적에 적합한 소속도를 계산할 수 있으며 전형성은 가우스 형태의 분포에서 생성된 포인트들의 분포 함수를 정확하게 모사함으로써 확률 밀도 추정의 방법으로도 사용될 수 있다. 또한 GG 방법은 Gustafson-Kessel 방법과 달리 클러스터에 포함된 포인트의 개수가 확연히 차이나는 경우에도 정확한 결과를 얻을 수 있다. 이러한 사실들은 실험 결과를 통해 확인할 수 있다.

개발자 별 버그 해결 유형을 고려한 자동적 개발자 추천 접근법 (A Technique to Recommend Appropriate Developers for Reported Bugs Based on Term Similarity and Bug Resolution History)

  • 박성훈;김정일;이은주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권12호
    • /
    • pp.511-522
    • /
    • 2014
  • 소프트웨어 개발 및 유지보수 과정에서 여러 종류의 버그가 발생된다. 버그는 소프트웨어의 개발 및 유지 보수 시간을 증가시키는 주요원인으로 소프트웨어의 품질 저하를 초래한다. 버그의 발생을 사전에 완벽하게 방지하는 것은 불가능하다. 대신 버그 질라(Bugzilla), 멘티스BT(MantisGBT), 트랙 (Trac), 질라 (JIRA)와 같은 버그 트래킹 시스템을 이용하여 버그를 효과적으로 관리하는 것이 가능하다. 개발자 또는 사용자가 발생된 버그를 버그 트래킹 시스템에 보고하면, 프로젝트 매니저에 의해서 보고된 버그는 버그 해결에 적합한 개발자에게 전달되어 해결될 때까지 버그 트래킹 시스템에 의해서 추척된다. 여기서 프로젝트 매니저가 버그 해결에 적합한 개발자를 선별하는 것을 버그 분류 작업 (Bug triaging)이라고 하며, 대량으로 발생되는 버그 리포트들을 수동으로 분류하는 것은 프로젝트 매니저에게 있어서 매우 어려운 문제가 된다. 본 논문에서는 버그 트래킹 시스템에 저장된 과거에 해결된 버그 리포트에서 개발자 별 버그 해결 유형을 추출하고, 이를 활용한 버그 분류 작업, 즉 개발자 추천 방법을 제안한다. 먼저 버그 트래킹 시스템에서 각 개발자가 해결한 버그 리포트들을 분류한 후, 자연 언어 처리 알고리즘과 TF-IDF (Term frequency-Inverse document frequency)를 활용하여 각 개발자 별 단어 리스트를 생성한다. 그 후, 새로운 버그가 발생되었을 때 코사인 유사도를 통해서 생성된 개발자 별 단어 리스트와 새로운 버그 리포트의 단어 리스트를 비교하여 가장 유사한 단어 리스트를 가지는 개발자를 추천하는 방법이다. 두 오픈 소스 프로젝트인 이클립스 JDT.UI와 CDT.CORE를 대상으로 수행한 개발자 추천 실험에서 기계 학습 모델 기반의 추천 방법보다 제안하는 방법이 더 우수한 결과를 얻은 것을 확인하였다.

Concepts of Disaster Prevention Design for Safety in the Future Society

  • Noh, Hwang-Woo;Kitagawa, Keiko;Oh, Yong-Sun
    • International Journal of Contents
    • /
    • 제10권1호
    • /
    • pp.54-61
    • /
    • 2014
  • In this paper, we propose a pioneering concept of DPD(Disaster Prevention Design) to realize a securable society in the future. Features of danger in the future society are expected to be diverse, abrupt occurring, large scale, and complicated ways. Due to increment of dangers with their features of uncertainty, interactivity, complexity, and accumulation, human-oriented design concept naturally participates in activities to prevent our society against disasters effectively. We presented DPD is an essential design activity in order to cope with dangers expected in the future societies as well as realize securable environments. DPD is also an integrated design aids including preemptive protections, rapid preparing, recovery, and interactive cooperation. We also expect these activities of DPD is effective for generation of new values in the market, satisfaction of social needs, expansion of design industry, and a novel chance for development in the future society. Throughout this paper, we submit various aspects of DPD concepts including definition, classification, scope, necessity, strategy, influencing elements, process, and its principle. We expect these concepts will be the seed and/or basement of DPD research for the future works. For the direction of study for DPD in the future, we emphasize alarm system for preemptive protection rather than recovery strategy for the damage occurred. We also need to research about progressive prevention techniques and convergence with other areas of design. In order to transfer the concept of product design from facility-oriented mechanism to human-oriented one, we should develop new kinds of city basis facilities, public-sense design concepts referred to social weak-party, e-Learning content design preparing disasters, and virtual simulation design etc. On the other hand, we have to establish laws and regulations to force central and/or provincial governments to have these DPD strategies applying their regional properties. Modern design activities are expanding to UI(user interface) content design area overcoming the conventional design concept of product and/or service. In addition, designers are recognized as art directors or life stylists who will change the human life and create the social value. DPD can be divided into prevention design, preparedness design, response design, and recovery design. Five strategies for successful DPD are Precaution-oriented, Human-oriented, Sense-oriented, Legislation, and Environment Friendly Strategies.

멀티미디어 이동형 단말을 위한 축구경기 비디오의 지능적 디스플레이 방법 (An Intelligent Display Scheme of Soccer Video for Multimedia Mobile Devices)

  • 서기원;김창익
    • 방송공학회논문지
    • /
    • 제11권2호
    • /
    • pp.207-221
    • /
    • 2006
  • 이 논문에서 우리는 작은 휴대형 단말기에서 축구영상을 화면에 보여주는 자동적이면서도 효율적인 방법을 제안하고자 한다. 정보통신 기술의 급속한 발전으로 작은 LCD 패널을 가진 멀티미디어 장치의 사용이 대단히 빠른 속도로 증가하고 있다. 이러한 작은 장치들의 증가 추세에도 불구하고 일반 TV나 HDTV 용으로 녹화되는 대부분의 동영상들은 작은 이동형 기기 사용자들이 화면 내의 상황을 인식하는데 있어서 많은 불편한 경험을 갖게 한다. 예를 들어, 원거리 샷 카메라 기법으로 찍힌 축구 경기 동영상의 경우, 운동장 내의 공과 선수들의 모습이 매우 작아서 작은 화면으로 알아보기가 힘든 경우가 발생한다. 따라서 소형 디스플레이 시청자들의 원활한 이해를 위해 지능형 디스플레이 기술을 제안하고자 한다. 이를 위한 핵심기술의 하나가 관심 영역을 자동으로 결정하는 일이다. 여기서 관심영역이란 시청자들이 화면 내에서 다른 부분에 비해 더욱 관심을 갖게 되는 부분을 말한다. 이 논문에서, 우리는 소형 단말기를 위한 축구 경기 비디오의 지능적 디스플레이에 초점을 맞춘다. 화면 내에서 시각적으로 현저한 부분의 검출에 관심을 갖는 방법 대신, 축구 경기 비디오 고유의 특징을 이용하는 도메인 한정적인 접근법을 이용한다. 제안된 알고리즘은 크게 세 단계 - 그라운드 색 학습과 샷 분류, 관심영역 결정으로 구성된다. 실험 결과를 통해 제안된 알고리즘이 이동형 단말기 상에서 지능형 디스플레이를 위한 좋은 해결책임을 보이고자 한다.

얼굴 인식을 위한 연립 대각화와 국부 선형 임베딩 (Locally Linear Embedding for Face Recognition with Simultaneous Diagonalization)

  • 김은솔;노영균;장병탁
    • 정보과학회 논문지
    • /
    • 제42권2호
    • /
    • pp.235-241
    • /
    • 2015
  • 국부 선형 임베딩(Locally Linear Embedding, LLE) [1]는 다양체 학습(manifold learning) 알고리즘 중 하나로 고차원 공간에 있는 데이터들 사이의 내적 값을 기반으로 임베딩하는 방법이다. LLE를 이용하여 임베딩 한 결과는 독특한 성질이 있는데, 고차원 공간 상에서 같은 평면에 있는 데이터들은 내적 값이 크기 때문에 저차원 공간에서도 가깝게 위치하도록 임베딩 되는 반면 수직으로 위치한 평면에있는 데이터들은 내적 값이 0이 되기 때문에 서로 떨어진 위치에 임베딩된다. 한편, 한 사람의 얼굴에 다양한 각도에서 조명을 비추면서 촬영한 이미지들은 저차원의 선형 부분공간을 구성한다는 사실이 잘 알려져 있다 [2]. 이에 본 논문에서는 다른 평면에 위치하는 데이터들을 자연스럽게 분류하여 임베딩하는 LLE 알고리즘을 얼굴 이미지에 사용하여 효과적으로 얼굴 인식 문제를 해결할 수 있는 방법을 제안한다. 제안하는 방법은 LLE에 연립 대각화(Simultaneous Diagonalization, SD)를 적용한 방법으로, S연립 대각화를 적용하면 데이터들이 형성하는 평면이 수직이 되도록 바꿀 수 있기 때문에 LLE의 성질을 극대화 할 수 있다. 실험 결과, 연립 대각화를 적용하고 LLE를 적용하면 서로 다른 사람의 얼굴 이미지들이 겹치지 않고 뚜렷하게 구분되는 효과가 있음을 확인하였다.

유제품 산업의 품질검사를 위한 빅데이터 플랫폼 개발: 머신러닝 접근법 (Building an Analytical Platform of Big Data for Quality Inspection in the Dairy Industry: A Machine Learning Approach)

  • 황현석;이상일;김성현;이상원
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.125-140
    • /
    • 2018
  • 품질검사는 중간상품이나 최종상품을 품질관리 표준을 만족하는 양품과 불량품으로 분리하는 일을 수행한다. 대량생산체계에서 품질을 수작업으로 검사하는 것은 일관성과 효율성을 저하시키므로 대량으로 생산되는 상품의 품질을 검사하는 것은 다수의 공정에서 기계에 의한 자동 확인과 분류를 포함하게 된다. 생산공정에서 발생하는 데이터를 활용하여 공정을 개선하고 최적화하려는 선행 연구들이 많았음에도 불구하고, 실시간에 많은 데이터를 처리하는데 있어서의 기술적인 한계로 인해 실제 구현에서의 제약이 많이 있었다. 최근 빅데이터에 관한 연구에서는 데이터 처리기술을 개선하였고, 실시간에 데이터를 수집, 처리, 분석하는 과정을 가능하게 하게 하고 있다. 본 논문에서는 품질검사를 위한 빅데이터 적용의 단계와 세부사항을 제안하고, 유제품 산업에 적용 사례를 제시하려고 한다. 먼저 선행 연구들을 조사하고, 제조 부문에 적용할 수 있는 빅데이터 분석절차를 제안하며 제안된 방법의 실현가능성을 평가하기 위해서, 유제품 산업 분야의 품질검사과정 중 하나에 회선신경망(Convolutional Neural Network) 기술 및 랜덤포레스트(Random Forest) 기술을 적용하였다. 품질검사를 위해 제품의 뚜껑 및 빨대의 사진을 수집, 처리, 분석하여, 결함 여부를 판단하고, 과거 품질 검사결과와 비교하였다. 제안된 방법은 과거에 수행되었던 품질검사에 비해 분류 정확성 측면에서 의미 있는 개선을 확인할 수 있었다. 본 연구를 통해, 유제품 산업의 빅데이터 활용을 통한 품질검사 정확도 개선 가능성을 확인하였다.