• Title/Summary/Keyword: classification error

Search Result 828, Processing Time 0.025 seconds

A Study on Rotating Object Classification using Deep Neural Networks (깊은신경망을 이용한 회전객체 분류 연구)

  • Lee, Yong-Kyu;Lee, Yill-Byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.425-430
    • /
    • 2015
  • This paper is a study to improve the classification efficiency of rotating objects by using deep neural networks to which a deep learning algorithm was applied. For the classification experiment of rotating objects, COIL-20 is used as data and total 3 types of classifiers are compared and analyzed. 3 types of classifiers used in the study include PCA classifier to derive a feature value while reducing the dimension of data by using Principal Component Analysis and classify by using euclidean distance, MLP classifier of the way of reducing the error energy by using error back-propagation algorithm and finally, deep learning applied DBN classifier of the way of increasing the probability of observing learning data through pre-training and reducing the error energy through fine-tuning. In order to identify the structure-specific error rate of the deep neural networks, the experiment is carried out while changing the number of hidden layers and number of hidden neurons. The classifier using DBN showed the lowest error rate. Its structure of deep neural networks with 2 hidden layers showed a high recognition rate by moving parameters to a location helpful for recognition.

Development of Extended Process Capability Index in Terms of Error Classification in the Production, Measurement and Calibration Processes (생산, 측정 및 교정 프로세스에서 오차 유형화에 의한 확장 공정능력지수의 개발)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.2
    • /
    • pp.117-126
    • /
    • 2009
  • We develop methods for propagating and analyzing EPCI(Extended Process Capability Index) by using the error type that classifies into accuracy and precision. EPCI developed in this study can be applied to the three combined processes that consist of production, measurement and calibration. Little calibration work discusses while a great deal has been studied about SPC(Statistical Process Contol) and MSA(Measurement System Analysis). EPCI can be decomposed into three indexes such as PPCI(Production Process Capability Index), PPPI(Production Process Performance Index), MPCI(Measurement PCD, and CPCI(Calibration PCI). These indexs based on the type of error classification can be used with various statistical techniques and principles such as SPC control charts, ANOVA(Analysis of Variance), MSA Gage R&R, Additivity-of-Variance, and RSSM(Root Sum of Square Method). As the method proposed is simple, any engineer in charge of SPC. MSA and calibration can use efficientily in industries. Numerical examples are presentsed. We recommed that the indexes can be used in conjunction with evaluation criteria.

Performance Analysis of Error Classification System on Distributed Multimedia Environment (분산 멀티미디어 환경에서 실행되는 오류 분류 시스템의 성능 분석)

  • Ko Eung-Nam
    • Journal of Digital Contents Society
    • /
    • v.4 no.2
    • /
    • pp.181-189
    • /
    • 2003
  • The requirement of distributed multimedia applications is the need for sophisticated QoS(quality of service) management. In terms of distributed multimedia systems, the most important catagories for quality of service are a timeless, volume, and reliability In this paper, we discuss a method for increasing reliability through fault tolerance. We describe the design and implementation of the ECA running on distributed multimedia environment. ECA is a system is able to classify automatically a software error based on distributed multimedia. This papaer explains a performance analysis of an error classification system running on distributed multimedia environment using the rule-based DEVS modeling and simulation techniques. In DEVS, a system has a time base, inputs, states, outputs, and functions.

  • PDF

Reducing Spectral Signature Confusion of Optical Sensor-based Land Cover Using SAR-Optical Image Fusion Techniques

  • ;Tateishi, Ryutaro;Wikantika, Ketut;M.A., Mohammed Aslam
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.107-109
    • /
    • 2003
  • Optical sensor-based land cover categories produce spectral signature confusion along with degraded classification accuracy. In the classification tasks, the goal of fusing data from different sensors is to reduce the classification error rate obtained by single source classification. This paper describes the result of land cover/land use classification derived from solely of Landsat TM (TM) and multisensor image fusion between JERS 1 SAR (JERS) and TM data. The best radar data manipulation is fused with TM through various techniques. Classification results are relatively good. The highest Kappa Coefficient is derived from classification using principal component analysis-high pass filtering (PCA+HPF) technique with the Overall Accuracy significantly high.

  • PDF

Document Image Layout Analysis Using Image Filters and Constrained Conditions (이미지 필터와 제한조건을 이용한 문서영상 구조분석)

  • Jang, Dae-Geun;Hwang, Chan-Sik
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.311-318
    • /
    • 2002
  • Document image layout analysis contains the process to segment document image into detailed regions and the process to classify the segmented regions into text, picture, table or etc. In the region classification process, the size of a region, the density of black pixels, and the complexity of pixel distribution are the bases of region classification. But in case of picture, the ranges of these bases are so wide that it's difficult to decide the classification threshold between picture and others. As a result, the picture has a higher region classification error than others. In this paper, we propose document image layout analysis method which has a better performance for the picture and text region classification than that of previous methods including commercial softwares. In the picture and text region classification, median filter is used in order to reduce the influence of the size of a region, the density of black pixels, and the complexity of pixel distribution. Futhermore the classification error is corrected by the use of region expanding filter and constrained conditions.

An Analysis of Human Error Mode and Type in the Railway Accidents and Incidents (철도 사고 및 장애의 인적오류 유형 분석)

  • Ko, Jong-Hyun;Jung, Won-Dea;Kim, Jae-Whan
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.66-71
    • /
    • 2007
  • Human error is one of the major contributors to the railway accidents or incidents. In order to develop an effective countermeasure to remove or reduce human errors, a systematic analysis should be preferentially performed to identify their causes, characteristics, and types of human error induced in accidents or incidents. This paper introduces a case study for human error analysis of the railway accidents and incidents. For the case study, more than 1,000 domestic railway accidents or incidents that happened during the year of 2004 have been investigated and a detailed error analysis was performed on the selected 90 cases, which were obviously caused by human error. This paper presents a classification structure for human error analysis, and summarizes the analysis results such as causes of the events, error modes and types, related worker, and task type.

A Framework for the Support of Predictive Cognitive Error Analysis of Emergency Tasks in Nuclear Power Plants (원자력발전소 비상운전시의 운전원 인지오류 예측 지원체계의 개발)

  • 김재환;정원대
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.117-124
    • /
    • 2001
  • This paper introduces m analysis framework and procedure for the support of the cognitive error analysis of emergency tasks in nuclear poler plants. The framework provides a new perspective in the utilization of influencing factors into error prediction. The framework can be characterized by two features. First, influencing factors that affect the occurrence of human error me classified into three groups, i.e., task characteristic factors(TCF), situation factors(SF), and performance assisting factors(PAF). This classification aims to support error prediction from the viewpoint of assessing the adequacy of PAF under given TCF and SF. Second, the assessment of influencing factors is made by each cognitive function. Through this, influencing factors assessment and error prediction can be made in an integrative way according to each cognitive function. In addition, it helps analysts identify vulnerable cognitive functions and error factors, and obtain specific nor reduction strategies. The proposed framework was applied to the error analysis of the bleed and feed operation of nuclear emergency tasks.

  • PDF

The optimum pattern recognition and classification using neural networks (신경망을 이용한 최적 패턴인식 및 분류)

  • Kim, J.H.;Seo, B.H.;Park, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.92-94
    • /
    • 2004
  • We become an industry information society which is advanced to the altitude with the today. The information to be loading various goods each other together at a circumstance environment is increasing extremely. The restriction recognizes the data of many Quantity and it follows because the human deals the task to classify. The development of a mathematical formulation for solving a problem like this is often very difficult. But Artificial intelligent systems such as neural networks have been successfully applied to solving complex problems in the area of pattern recognition and classification. So, in this paper a neural network approach is used to recognize and classification problem was broken into two steps. The first step consist of using a neural network to recognize the existence of purpose pattern. The second step consist of a neural network to classify the kind of the first step pattern. The neural network leaning algorithm is to use error back-propagation algorithm and to find the weight and the bias of optimum. Finally two step simulation are presented showing the efficacy of using neural networks for purpose recognition and classification.

  • PDF

A New Clustering Method for Minimum Classification Error (분류 오류 최소화를 위한 클러스터링 기법)

  • Heo, Gyeong-Yong;Kim, Seong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.1-8
    • /
    • 2014
  • Clustering is one of the most popular unsupervised learning methods, which is widely used to form clusters with homogeneous data. Clustering was used to extract contexts corresponding to clusters and a classification method was applied to each context or cluster individually. However, it is difficult to say that the unsupervised clustering is the best context forming method from the view of classification. In this paper, a new clustering method considering classification was proposed. The proposed method tries to minimize classification error in each cluster when a classification method is applied to each context locally. For this purpose, the proposed method adds constraints forcing two data points belong to the same class to have small distances, and two data points belong to different classes to have large distances in each cluster like in linear discriminant analysis. The usefulness of the proposed method is confirmed by experimental results.

Adaptive Hyperspectral Image Classification Method Based on Spectral Scale Optimization

  • Zhou, Bing;Bingxuan, Li;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 2021
  • The adaptive sparse representation (ASR) can effectively combine the structure information of a sample dictionary and the sparsity of coding coefficients. This algorithm can effectively consider the correlation between training samples and convert between sparse representation-based classifier (SRC) and collaborative representation classification (CRC) under different training samples. Unlike SRC and CRC which use fixed norm constraints, ASR can adaptively adjust the constraints based on the correlation between different training samples, seeking a balance between l1 and l2 norm, greatly strengthening the robustness and adaptability of the classification algorithm. The correlation coefficients (CC) can better identify the pixels with strong correlation. Therefore, this article proposes a hyperspectral image classification method called correlation coefficients and adaptive sparse representation (CCASR), based on ASR and CC. This method is divided into three steps. In the first step, we determine the pixel to be measured and calculate the CC value between the pixel to be tested and various training samples. Then we represent the pixel using ASR and calculate the reconstruction error corresponding to each category. Finally, the target pixels are classified according to the reconstruction error and the CC value. In this article, a new hyperspectral image classification method is proposed by fusing CC and ASR. The method in this paper is verified through two sets of experimental data. In the hyperspectral image (Indian Pines), the overall accuracy of CCASR has reached 0.9596. In the hyperspectral images taken by HIS-300, the classification results show that the classification accuracy of the proposed method achieves 0.9354, which is better than other commonly used methods.