• Title/Summary/Keyword: classification defect rate

Search Result 49, Processing Time 0.027 seconds

Development of Automated Surface Inspection System using the Computer V (컴퓨터 비젼을 이용한 표면결함검사장치 개발)

  • Lee, Jong-Hak;Jung, Jin-Yang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.668-670
    • /
    • 1999
  • We have developed a automatic surface inspection system for cold Rolled strips in steel making process for several years. We have experienced the various kinds of surface inspection systems, including linear CCD camera type and the laser type inspection system which was installed in cold rolled strips production lines. But, we did not satisfied with these inspection systems owing to insufficient detection and classification rate, real time processing performance and limited line speed of real production lines. In order to increase detection and computing power, we have used the Dark Field illumination with Infra_Red LED, Bright Field illumination with Xenon Lamp, Parallel Computing Processor with Area typed CCD camera and full software based image processing technique for the ease up_grading and maintenance. In this paper, we introduced the automatic inspection system and real time image processing technique using the Object Detection, Defect Detection, Classification algorithms. As a result of experiment, under the situation of the high speed processed line(max 1000 meter per minute) defect detection is above 90% for all occurred defects in real line, defect name classification rate is about 80% for most frequently occurred 8 defect, and defect grade classification rate is 84% for name classified defect.

  • PDF

Performance improvement of Classification of Steam Generator Tube Defects in Nuclear Power Plant Using Neural Network (신경회로망을 이용한 원전SG 세관 결함패턴 분류성능 향상기법)

  • Jo, Nam-Hoon;Han, Ki-Won;Song, Sung-Jin;Lee, Hyang-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1224-1230
    • /
    • 2007
  • In this paper, we study the classification of defects at steam generator tube in nuclear power plant using eddy current testing (ECT). We consider 4 defect patterns of SG tube: I-In type, I-Out type, V-In type, and V-Out type. Through numerical analysis program based on finite element modeling, 400 ECT signals are generated by varying width and depth of each defect type. In order to improve the classification performance, we propose new feature extraction technique. After extracting new features from the generated ECT signals, multi-layer perceptron is used to classify the defect patterns. Through the computer simulation study, it is shown that the proposed method achieves 100% classification success rate while the previous method yields 91% success rate.

The Development of Surface Inspection System Using the Real-time Image Processing (실시간 영상처리를 이용한 표면흠검사기 개발)

  • 이종학;박창현;정진양
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.171-171
    • /
    • 2000
  • We have developed m innovative surface inspection system for automated quality control for steel products in POSCO. We had ever installed the various kinds of surface inspection systems, such as a linear CCD and a laser typed surface inspection systems at cold rolled strips production lines. But, these systems cannot fulfill the sufficient detection and classification rate, and real time processing performance. In order to increase detection and classification rate, we have used the Dark, Bright and Transition Field illumination and area type CCD camera, and fur the real time image processing, parallel computing has been used. In this paper, we introduced the automatic surface inspection system and real time image processing technique using the Object Detection, Defect Detection, Classification algorithms and its performance obtained at the production line.

  • PDF

Development of surface defect inspection algorithms for cold mill strip using tree structure (트리 구조를 이용한 냉연 표면흠 검사 알고리듬 개발에 관한 연구)

  • Kim, Kyung-Min;Jung, Woo-Yong;Lee, Byung-Jin;Ryu, Gyung;Park, Gui-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.365-370
    • /
    • 1997
  • In this paper we suggest a development of surface defect inspection algorithms for cold mill strip using tree structure. The defects which exist in a surface of cold mill strip have a scattering or singular distribution. This paper consists of preprocessing, feature extraction and defect classification. By preprocessing, the binarized defect image is achieved. In this procedure, Top-hit transform, adaptive thresholding, thinning and noise rejection are used. Especially, Top-hit transform using local min/max operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, histogram-ratio features are calculated. The histogram-ratio feature is taken from the gray-level image. For the defect classification, we suggest a tree structure of which nodes are multilayer neural network clasifiers. The proposed algorithm reduced error rate comparing to one stage structure.

  • PDF

The Development of Automatic Inspection System for Flaw Detection in Welding Pipe (배관용접부 결함검사 자동화 시스템 개발)

  • Yoon Sung-Un;Song Kyung-Seok;Cha Yong-Hun;Kim Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.87-92
    • /
    • 2006
  • This paper supplements shortcoming of radioactivity check by detecting defect of SWP weld zone using ultrasonic wave. Manufacture 2 stage robot detection systems that can follow weld bead of SWP by method to detect weld defects of SWP that shape of weld bead is complex for this as quantitative. Also, through signal processing ultrasonic wave defect signal system of GUI environment that can grasp easily existence availability of defect because do videotex compose. Ultrasonic wave signal of weld defects develops artificial intelligence style sightseeing system to enhance pattern recognition of weld defects and the classification rate using neural net. Classification of weld defects that do fan Planar defect and that do volume defect of by classify.

A Study on Defect Prediction through Real-time Monitoring of Die-Casting Process Equipment (주조공정 설비에 대한 실시간 모니터링을 통한 불량예측에 대한 연구)

  • Chulsoon Park;Heungseob Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.157-166
    • /
    • 2022
  • In the case of a die-casting process, defects that are difficult to confirm by visual inspection, such as shrinkage bubbles, may occur due to an error in maintaining a vacuum state. Since these casting defects are discovered during post-processing operations such as heat treatment or finishing work, they cannot be taken in advance at the casting time, which can cause a large number of defects. In this study, we propose an approach that can predict the occurrence of casting defects by defect type using machine learning technology based on casting parameter data collected from equipment in the die casting process in real time. Die-casting parameter data can basically be collected through the casting equipment controller. In order to perform classification analysis for predicting defects by defect type, labeling of casting parameters must be performed. In this study, first, the defective data set is separated by performing the primary clustering based on the total defect rate obtained during the post-processing. Second, the secondary cluster analysis is performed using the defect rate by type for the separated defect data set, and the labeling task is performed by defect type using the cluster analysis result. Finally, a classification learning model is created by collecting the entire labeled data set, and a real-time monitoring system for defect prediction using LabView and Python was implemented. When a defect is predicted, notification is performed so that the operator can cope with it, such as displaying on the monitoring screen and alarm notification.

Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring

  • Rizzo, Piervincenzo;Lanza di Scalea, Francesco
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.253-274
    • /
    • 2006
  • The structural monitoring of multi-wire strands is of importance to prestressed concrete structures and cable-stayed or suspension bridges. This paper addresses the monitoring of strands by ultrasonic guided waves with emphasis on the signal processing and automatic defect classification. The detection of notch-like defects in the strands is based on the reflections of guided waves that are excited and detected by magnetostrictive ultrasonic transducers. The Discrete Wavelet Transform was used to extract damage-sensitive features from the detected signals and to construct a multi-dimensional Damage Index vector. The Damage Index vector was then fed to an Artificial Neural Network to provide the automatic classification of (a) the size of the notch and (b) the location of the notch from the receiving sensor. Following an optimization study of the network, it was determined that five damage-sensitive features provided the best defect classification performance with an overall success rate of 90.8%. It was thus demonstrated that the wavelet-based multidimensional analysis can provide excellent classification performance for notch-type defects in strands.

개심술에 관한 연구1979년도 320례 분석

  • 이영균
    • Journal of Chest Surgery
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 1980
  • In 1979 during the period of about 10 months 320 cases of open heart surgery were done in Seoul National University Hospital. There were 220 Congenital anomaly cases consisting of 113 acyanotic and 107 cyanotic varieties, and 1 O0 acquired cardiac lesions. Out of 100 acquired lesions 96 were valvular cues. Among 97 valve replacement cases 3 were Ebstein anomaly treated with plication and tricuspid valve replacement. Operative mortality rate for congenital anomaly was 10.6%, with 2.7% for acyanotic and 22.4% for cyanotic group. For acquired lesions over all operative mortality was 7%. Tetralogy of Fallot, ventricular septal defect, and atrial septal defect were the 3 main congenital anomalies, with 88 cues, 69 cases, and 27 cues respectively. In 61 simple ventricular septal defect without other anomalies operative mortality rate was 1.6%, in 27 atrial septal defect no death and, in tetralogy of Fallot 12.2%. Among 69 ventricular septal defect cases 19[27.5%] type I VSDs, after Kirklin-Becu classification, were found, rather high relative incidence of type I compared with Caucasian patients. Among 97 valve replacement cases 20 double valves were replaced-11 mitral with aortic and 9 mitral with tricuspid valves. Over all operative mortality rate for valve replacement was 8.2% with 3.3% in 61 mitral valve replace-merit. The over all operative mortality rate for 320 open heart surgery cases was 10.6%. Bubble type oxygenator and xenograft bioprosthetic valves were utilized In almost all cases.

  • PDF

Properties of PD and Classification of Defect Patterns in Solid Insulation (고체절연체의 내부결함에 따른 부분방전 특성과 패턴분류)

  • Kang, S.H.;Park, Y.G.;Lee, K.W.;KiM, W.S.;Lee, Y.H.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1624-1626
    • /
    • 1999
  • PD in defect of solid insulation system is very harmful since It often leads to deterioration of insulation by the combined action of the discharge ions bombarding the surface and the action of chemical compounds that are formed by the discharge. PD can indicate incipient failure, so it has been used to determine degradation of insulation. In this paper. we investigated PD in defects of solid insulation by using statical method and classified PD patterns with surface discharge, electrical tree and void discharge by using Kohonen network. we used peak charge, average discharge power, average discharge current, repetition rate, skewness, kurtosis, QN of the max pulse height vs. repetition rate $H_q(n)$ for analysis and classification.

  • PDF

Development of surface defect inspection algorithms for cold mill strip (냉연 표면흠 검사 알고리듬 개발에 관한 연구)

  • Kim, Kyoung-Min;Park, Gwi-Tae;Park, Joong-Jo;Lee, Jong-Hak;Jung, Jin-Yang;Lee, Joo-Kang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.179-186
    • /
    • 1997
  • In this paper we suggest a development of surface defect inspection algorithms for cold mill strip. The defects which exist in a surface of cold mill strip have a scattering or singular distribution. This paper consists of preprocessing, feature extraction and defect classification. By preprocessing, the binarized defect image is achieved. In this procedure, Top-hit transform, adaptive thresholding, thinning and noise rejection are used. Especially, Top-hit transform using local min/max operation diminishes the effect of bad lighting. In feature extraction, geometric, moment and co-occurrence matrix features are calculated. For the defect classification, multilayer neural network is used. The proposed algorithm showed 15% error rate.

  • PDF