• 제목/요약/키워드: classification algorithm

검색결과 2,919건 처리시간 0.036초

우리나라 경도 치매 노인의 지역사회 참여 증진을 위한 ICF 기반 Decision Tree for Chatbot 시스템 개발과 효과성 검증 (Development and Efficacy Validation of an ICF-Based Chatbot System to Enhance Community Participation of Elderly Individuals with Mild Dementia in South Korea)

  • 변해원
    • 미래기술융합논문지
    • /
    • 제3권3호
    • /
    • pp.17-27
    • /
    • 2024
  • 본 연구는 우리나라 경도 치매 노인의 지역사회 참여 증진을 위해 국제 기능, 장애 및 건강 분류(ICF) 기반의 챗봇 시스템을 개발하고 평가하였다. 대상자는 경도 치매 진단을 받고 독거 생활을 하는 노인 12명과 가족 돌봄 제공자 15명을 선정하였다. ICF기반 챗봇 시스템의 개발과정은 포괄적인 요구 평가, 시스템 설계, 콘텐츠 생성, 트랜스포머 어텐션 알고리즘을 사용한 자연어 처리 및 사용성 테스트를 포함하였다. ICF기반 챗봇은 개인 맞춤형 활동 추천, 알림 및 신체적, 사회적, 인지적 참여를 지원하는 정보를 제공하도록 설계되었다. 본 연구에서 사용성 테스트 결과 사용자 만족도와 유용성 인식이 높았으며, 지역사회 활동 및 사회적 상호작용에서 유의미한 개선이 확인되었다. 정량 분석 결과, 주간 지역사회 활동이 92% 증가하고 사회적 상호작용이 84% 증가하였다. 정성적 분석(심층 인터뷰)에서는 챗봇의 사용자 친화적 인터페이스, 제안된 활동의 적절성, 그리고 돌봄 제공자의 부담을 줄이는 역할이 강조되었다. 본 연구는 ICF 기반 챗봇 시스템이 경도 치매 노인의 지역사회 참여를 효과적으로 촉진하고 삶의 질을 향상시킬 수 있음을 시사한다.

AI 및 텍스트 마이닝 기법을 활용한 지반조사보고서 데이터 추출 자동화 (Automated Data Extraction from Unstructured Geotechnical Report based on AI and Text-mining Techniques)

  • 박지민;서완혁;서동희;윤태섭
    • 한국지반공학회논문집
    • /
    • 제40권4호
    • /
    • pp.69-79
    • /
    • 2024
  • 현장 지반정수 데이터는 다양한 현장 및 실내시험을 통해 획득된 후 지반조사보고서의 형태로 작성되어 유통된다. 효율적인 설계 및 시공을 위해선 지반정수의 디지털 데이터베이스화가 필수적이나, 현재 지반조사보고서 데이터는 수동 입력 방식으로 많은 시간과 인력이 소요되며, 오류가 발생하기도 한다. 본 연구는 이미지 기반 딥러닝 모델 및 텍스트 마이닝 기법을 사용하여 지반조사보고서에서 데이터를 자동으로 추출하는 방법을 제안하였다. 딥러닝 기반의 페이지 분류 모델과 텍스트 서칭 알고리즘을 사용하여 지반조사보고서 부록 내 세부 지반시험 결과 보고서를 100%의 정확도로 분류할 수 있었다. 컴퓨터 비전 알고리즘을 통해 보고서 페이지 내 유효한 데이터 영역을 결정하고, 텍스트 분석을 통해 추출 데이터 항목과 상응하는 지반 데이터를 짝지어 데이터를 추출했다. 제안한 모델은 205개의 지반조사 보고서로 구성된 데이터셋을 통해 검증되었으며, 평균 93.0%의 데이터 추출 정확도를 기록하였다. 마지막으로, 추출 모델의 실무 적용성을 위해 사용자 인터페이스 기반 프로그램을 개발하였다. 프로그램 내 사용자 상호작용을 통해 지반조사보고서 PDF 파일을 업로드하고 자동으로 보고서를 분석 및 데이터를 추출, 편집할 수 있도록 했다. 이를 통해 지반조사보고서의 디지털화 및 지반 데이터베이스 구축이 더욱 효율적이고 정확하게 이루어질 수 있을 것으로 판단된다.

BERT 기반 감성분석을 이용한 추천시스템 (Recommender system using BERT sentiment analysis)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.1-15
    • /
    • 2021
  • 추천시스템은 사용자의 기호를 파악하여 물품 구매 결정을 도와주는 역할을 할 뿐만 아니라, 비즈니스 전략의 관점에서도 중요한 역할을 하기에 많은 기업과 기관에서 관심을 갖고 있다. 최근에는 다양한 추천시스템 연구 중에서도 NLP와 딥러닝 등을 결합한 하이브리드 추천시스템 연구가 증가하고 있다. NLP를 이용한 감성분석은 사용자 리뷰 데이터가 증가함에 따라 2000년대 중반부터 활용되기 시작하였지만, 기계학습 기반 텍스트 분류를 통해서는 텍스트의 특성을 완전히 고려하기 어렵기 때문에 리뷰의 정보를 식별하기 어려운 단점을 갖고 있다. 본 연구에서는 기계학습의 단점을 보완하기 위하여 BERT 기반 감성분석을 활용한 추천시스템을 제안하고자 한다. 비교 모형은 Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units)를 기반으로 하는 추천 모형이며, 실제 데이터에 대한 분석 결과, BERT를 기반으로 하는 추천시스템의 성과가 가장 우수한 것으로 나타났다.

매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색 (Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage)

  • 권문희;김승섭
    • 자원환경지질
    • /
    • 제55권5호
    • /
    • pp.551-561
    • /
    • 2022
  • 지구물리탐사기법은 매장 문화재 조사에 필요한 높은 해상도의 지하 구조 영상 생성과 매장 유구의 정확한 위치 결정하는 데 매우 유용하다. 이 연구에서는 경주 신라왕경 중심방의 고해상도 지하투과레이더 영상에서 유구의 규칙적인 배열이나 선형 구조를 자동적으로 구분하기 위하여 영상처리 기법인 영상 특징 추출과 영상분할 기법을 적용하였다. 영상 특징 추출의 대상은 유구의 원형 적심과 선형의 도로 및 담장으로 캐니 윤곽선 검출(Canny edge detection)과 허프 변환(Hough Transform) 알고리듬을 적용하였다. 캐니 윤곽선 검출 알고리듬으로 검출된 윤곽선 이미지에 허프 변환을 적용하여 유구의 위치를 탐사 영상에서 자동 결정하고자 하였으나, 탐사 지역별로 매개변수를 달리해서 적용해야 한다는 제약이 있었다. 영상 분할 기법의 경우 연결요소 분석 알고리듬과 QGIS에서 제공하는 Orfeo Toolbox (OTB)를 이용한 객체기반 영상분석을 적용하였다. 연결 요소 분석 결과에서, 유구에 의한 신호들이 연결된 요소들로 효과적으로 인식되었지만 하나의 유구가 여러 요소로 분할되어 인식되는 경우도 발생함을 확인하였다. 객체기반 영상분석에서는 평균이동(Large-Scale Mean-Shift, LSMS) 영상 분할을 적용하여 각 분할 영역에 대한 화소 정보가 포함된 벡터 레이어를 우선 생성하였고, 유구를 포함하는 영역과 포함하지 않는 영역을 선별하여 훈련 모델을 생성하였다. 이 훈련모델에 기반한 랜덤포레스트 분류기를 이용해 LSMS 영상분할 벡터 레이어에서 유구를 포함하는 영역과 그렇지 않은 영역이 자동 분류 될 수 있음을 확인하였다. 이러한 자동 분류방법을 매장 문화재 지하투과레이더 영상에 적용한다면 유구 발굴 계획에 활용가능한 일관성 있는 결과를 얻을 것으로 기대한다.

의사결정나무 CART 알고리즘을 이용한 청소년 아침결식 예측 모형: 제7기 (2016-2018년) 국민건강영양조사 자료분석 (A prediction model for adolescents' skipping breakfast using the CART algorithm for decision trees: 7th (2016-2018) Korea National Health and Nutrition Examination Survey)

  • 최선아;정성석;노정옥
    • Journal of Nutrition and Health
    • /
    • 제56권3호
    • /
    • pp.300-314
    • /
    • 2023
  • 본 연구는 2016-2018년 국민건강영양조사 자료를 이용하여 청소년의 아침결식과 관련된 요인을 찾고 아침결식 예측모형을 분석하여 청소년의 아침결식 예방 교육 및 정책 수립에 기초 자료를 제공하고자 하였다. 2016-2018년 국민건강영양조사의 참여자는 총 24,269명으로 12-18세의 청소년 중 변수 결측자를 제외한 대상자는 1,024명이며, 이중 아침식사 섭취자 579명, 결식자 445명이었다. 남학생의 49.1%, 여학생의 50.9%가 아침결식자였다. 연령은 아침식사 결식군이 유의적으로 높으며, 결식군의 고등학생 비율이 높았다. 가구소득 4분위수는 아침식사 섭취군의 9.1%, 결식군의 15.4%가 '하'로 유의적인 차이를 보였다. 조사대상자의 신체적 요인은 유의적인 차이를 보이지 않았으나 체중감소를 위해 결식을 하는 경우는 아침식사 결식군의 25.3%, 섭취군의 10.4%로 유의적인 차이를 보였다. 조사대상자의 식습관과 정신건강에서 아침식사 결식군이 섭취군보다 1일 1회이상 외식횟수가 유의적으로 높았으며, 최근 1년간 1주 동안 5-7회 이상의 저녁식사 섭취빈도는 아침섭취군이 유의적으로 높았다. 또한, 아침식사 섭취군은 결식군보다 영양교육 경험이 유의적으로 높았으며, 아침식사 섭취군이 결식군보다 에너지, 단백질, 지방, 탄수화물, 식이섬유, 콜레스테롤, 비타민 A, 비타민 B1, 비타민 B2, 니아신, 비타민 C, 칼슘, 인, 나트륨, 칼륨, 철의 섭취율 및 탄수화물, 단백질, 지방의 섭취비율도 유의적으로 높았다. 아침결식 예측 모형을 도출하기 위해 CART 알고리즘을 사용한 의사결정나무 분석결과, 아침식사 섭취여부를 결정하는 주요인은 투입된 7개의 변수 중 교육수준과 영양교육 경험을 제외한 결식을 통한 체중조절, 가구소득 4분위수, 저녁식사 빈도, 연령, 외식 횟수였다. 체중조절을 위하여 결식을 하는 경우는 아침식사 결식군에서 높았다. 체중조절을 위하여 결식을 하지 않는 대상자는 가구소득 4분위수의 수준에서 소득이 '하', '중하'일 때 아침결식 비율이 높았다. 가구소득수준이 '상', '중상' 대상자의 경우는 저녁식사 빈도가 주 3-4회 이하인 경우 아침결식 비율이 높았다. 저녁식사 빈도가 주 5-7회이더라도 연령이 14.5세 초과인 경우 아침결식을 하고 있으며, 연령이 14.5세 미만인 대상자들은 외식횟수가 일 1회 이상인 경우, 주 6회 이하인 경우 아침결식을 하고 있었다. 따라서 아침결식을 감소시키기 위해서 청소년 대상의 각 그룹의 결식 주요인에 따라 올바른 체중조절 방법, 아침식사 배달, 건강정보에 대한 접근성 높이기, 아침결식과 질병과의 관련성 교육을 위한 토론수업 및 역할놀이 등과 같은 맞춤형 교육이 필요하며, 향후 청소년의 저녁식사 결식 감소 방안에 대한 연구가 추가적으로 진행되어야 하겠다.

Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구 (A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm)

  • 최지혜;김민승;이찬호;최정환;이정희;성태응
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.131-145
    • /
    • 2020
  • 산업혁신의 흐름에 발맞추어 다양한 분야에서 활용되고 있는 IoT 기술은 빅데이터의 접목을 통한 새로운 비즈니스 모델의 창출 및 사용자 친화적 서비스 제공의 핵심적인 요소로 부각되고 있다. 사물인터넷이 적용된 디바이스에서 누적된 데이터는 사용자 환경 및 패턴 분석을 통해 맞춤형 지능 시스템을 제공해줄 수 있어 편의 기반 스마트 시스템 구축에 다방면으로 활용되고 있다. 최근에는 이를 공공영역 혁신에 확대 적용하여 CCTV를 활용한 교통 범죄 문제 해결 등 스마트시티, 스마트 교통 등에 활용하고 있다. 그러나 이미지 데이터를 활용하는 기존 연구에서는 개인에 대한 사생활 침해 문제 및 비(非)일반적 상황에서 객체 감지 성능이 저하되는 한계가 있다. 본 연구에 활용된 IoT 디바이스 기반의 센서 데이터는 개인에 대한 식별이 불필요해 사생활 이슈로부터 자유로운 데이터로, 불특정 다수를 위한 지능형 공공서비스 구축에 효과적으로 활용될 수 있다. 대다수의 국민들이 일상적으로 활용하는 도시철도에서의 지능형 보행자 트래킹 시스템에 IoT 기반의 적외선 센서 디바이스를 활용하고자 하였으며 센서로부터 측정된 온도 데이터를 실시간 송출하고, CNN-LSTM(Convolutional Neural Network-Long Short Term Memory) 알고리즘을 활용하여 구간 내 보행 인원의 수를 예측하고자 하였다. 실험 결과 MLP(Multi-Layer Perceptron) 및 LSTM(Long Short-Term Memory), RNN-LSTM(Recurrent Neural Network-Long Short Term Memory)에 비해 제안한 CNN-LSTM 하이브리드 모형이 가장 우수한 예측성능을 보임을 확인하였다. 본 논문에서 제안한 디바이스 및 모델을 활용하여 그간 개인정보와 관련된 법적 문제로 인해 서비스 제공이 미흡했던 대중교통 내 실시간 모니터링 및 혼잡도 기반의 위기상황 대응 서비스 등 종합적 메트로 서비스를 제공할 수 있을 것으로 기대된다.

온라인 쇼핑몰에서 상품 설명 이미지 내의 키워드 인식을 위한 딥러닝 훈련 데이터 자동 생성 방안 (The way to make training data for deep learning model to recognize keywords in product catalog image at E-commerce)

  • 김기태;오원석;임근원;차은우;신민영;김종우
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.1-23
    • /
    • 2018
  • E-commerce 환경의 발전으로 소비자들은 다양한 상품들을 한 자리에서 폭 넓게 비교할 수 있게 되었다. 하지만 온라인 쇼핑몰에 올라와있는 상당량의 주요 상품 정보들이 이미지 형태이기 때문에 컴퓨터가 인지할 수 있는 텍스트 기반 검색 시스템에 반영될 수 없다는 한계가 존재한다. 이러한 한계점은 일반적으로 기존 기계학습 기술 및 OCR(Optical Character Recognition) 기술을 활용해, 이미지 형태로 된 키워드를 인식함으로써 개선할 수 있다. 그러나 기존 OCR 기술은 이미지 안에 글자가 아닌 그림이 많고 글자 크기가 작으면 낮은 인식률을 보인다는 문제가 있다. 이에 본 연구에서는 기존 기술들의 한계점을 해결하기 위하여, 딥러닝 기반 사물인식 모형 중 하나인 SSD(Single Shot MultiBox Detector)를 개조하여 이미지 형태의 상품 카탈로그 내의 텍스트 인식모형을 설계하였다. 하지만 이를 학습시키기 위한 데이터를 구축하는 데 상당한 시간과 비용이 필요했는데, 이는 지도학습의 방법론을 따르는 SSD 모형은 훈련 데이터마다 직접 정답 라벨링을 해줘야 하기 때문이다. 본 연구는 이러한 문제점을 해결하기 위해 '훈련 데이터 자동 생성 프로그램'을 함께 개발하였다. 훈련 데이터 자동 생성 프로그램을 통해 수작업으로 데이터를 만드는 것에 비하여 시간과 비용을 대폭 절감할 수 있었으며, 생성된 훈련용 데이터를 통해 모형의 인식 성능을 높일 수 있었다. 더 나아가 실험연구를 통해 자동으로 생성된 훈련 데이터의 특징별로 인식기 모형의 성능에 얼마나 큰 영향을 끼치는지 알아보고, 성능 향상에 효과적인 데이터의 특징을 분석하였다. 본 연구를 통해서 개발된 상품 카탈로그 내 텍스트 인식모형과 훈련 데이터 자동 생성 프로그램은 온라인 쇼핑몰 판매자들의 상품 정보 등록 수고를 줄여줄 수 있으며, 구매자들의 상품 검색 시 결과의 정확성을 향상시키는 데 기여할 수 있을 것으로 기대한다.

비대칭적 전이효과와 SVM을 이용한 변동성 매도전략의 수익성 개선 (Performance Improvement on Short Volatility Strategy with Asymmetric Spillover Effect and SVM)

  • 김선웅
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.119-133
    • /
    • 2020
  • Fama에 의하면 효율적 시장에서는 일시적으로 높은 수익을 얻을 수는 있지만 꾸준히 시장의 평균적인 수익을 초과하는 투자전략을 만드는 것은 불가능하다. 본 연구의 목적은 변동성의 장중 비대칭적 전이효과를 이용하는 변동성 매도전략을 기준으로 투자 성과를 추가적으로 개선하기 위하여 SVM을 활용하는 투자 전략을 제안하고 그 투자성과를 분석하고자 한다. 한국 시장에서 변동성의 비대칭적 전이효과는 미국 시장의 변동성이 상승한 날은 한국 시장의 아침 동시호가에 변동성 상승이 모두 반영되지만, 미국 시장의 변동성이 하락한 날은 한국 시장의 변동성이 아침 동시호가에서 뿐만 아니라 장 마감까지 계속해서 하락하는 이상현상을 말한다. 분석 자료는 2008년부터 2018년까지의 S&P 500, VIX, KOSPI 200, V-KOSPI 200 등의 일별 시가지수와 종가지수이다. 11년 동안의 분석 결과, 미국 시장의 변동성이 상승으로 마감한 날은 그 영향력이 한국 시장의 아침 동시호가 변동성에 모두 반영되지만, 미국 시장의 변동성이 하락으로 마감한 날은 그 영향력이 한국 시장의 아침 동시호가뿐만 아니라 오후 장 마감까지도 계속해서 유의적으로 영향을 미치고 있다. 시장이 효율적이라면 미국 시장의 전일 변동성 변화는 한국 시장의 아침 동시호가에 모두 반영되고 동시호가 이후에는 추가적인 영향력이 없어야 한다. 이러한 변동성의 장중 비정상적 전이 패턴을 이용하는 변동성 매도전략을 제안하였다. 미국 시장의 전날 변동성이 하락한 경우 한국 시장에서 아침 동시호가에 변동성을 매도하고 장 마감시에 포지션을 청산하는 변동성 데이트레이딩전략을 분석하였다. 연수익률은 120%, 위험지표인 MDD는 -41%, 위험과 수익을 고려한 성과지수인 Sharpe ratio는 0.27을 기록하고 있다. SVM 알고리즘을 이용해 변동성 데이트레이딩전략의 성과 개선을 시도하였다. 2008년부터 2014년까지의 입력자료를 이용하여 V-KOSPI 200 변동성지수의 시가-종가 변동 방향을 예측하고, 시가-종가 변동율이(-)로 예측되는 경우에만 변동성 매도포지션을 진입하였다. 거래비용을 고려하면 2015년부터 2018년까지 테스트기간의 연평균수익률은 123%로 기준 전략 69%보다 크게 높아지고, 위험지표인 MDD도 -41%에서 -29%로 낮아져, Sharpe ratio가 0.32로 개선되고 있다. 연도별로도 모두 수익을 기록하면서 안정적 수익구조를 보여주고 있고, 2015년을 제외하고는 투자 성과가 개선되고 있다.

호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법 (An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels)

  • 문현실;성다윗;김재경
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.21-41
    • /
    • 2019
  • 정보 기술의 발전으로 온라인에서 활용 가능한 데이터의 양이 급속히 증대되고 있다. 이러한 빅데이터 시대에 많은 연구들이 통찰력을 발견하고 데이터의 효과를 입증하기 위해 노력하고 있다. 특히 관광 산업의 경우 정보에 민감한 사업으로 소셜 미디어의 영향력이 높고 소셜 미디어의 상품 후기에 소비자들이 영향을 많이 받아 많은 기업과 연구자들이 소셜 미디어를 분석하여 새로운 서비스 및 통찰력을 얻고자 시도하였다. 하지만 소셜 미디어의 후기는 텍스트로 이루어진 대표적인 비정형 데이터로 적절한 처리를 하지 않으면 분석에 활용할 수 없다. 또한 후기 데이터의 양이 방대함에 따라 사람이 직접 분석하기도 어려운 실정이다. 따라서, 본 연구에서는 이러한 소셜미디어 상의 온라인 후기로부터 직접 호텔의 서비스 품질 향상을 위한 통찰력을 추출할 수 있는 분석 방법을 제시하고자 한다. 이를 위해 본 연구에서는 먼저 후기 데이터에 포함되어 있는 주제어를 추출하는 토픽 마이닝 기법을 적용하였다. 토픽 마이닝은 대용량의 문서 집합으로부터 문서를 대표하는 단어 집합을 추출하는 기법을 의미하며 본 연구에서는 다양한 연구에서 활용되고 있는 LDA모형을 사용하여 토픽 마이닝을 수행하였다. 하지만, 토픽 마이닝 자체만으로는 주제어와 평점 사이의 관계를 도출할 수 없어 서비스 품질 향상을 위한 통찰력을 발견하기 어렵다. 그에 따라 본 연구에서는 토픽 마이닝의 결과값을 기반으로 의사결정나무 모형을 사용하여 주제어와 평점 사이의 관계를 도출하였다. 이러한 방법론의 유용성을 평가하기 위해 홍콩에 있는 4개 호텔의 온라인 후기를 수집하고 제안한 방법론의 분석 결과를 해석하는 실험을 진행하였다. 실험 결과 긍정 후기를 통해 각 호텔이 유지해야할 서비스 영역을 발견할 수 있었으며 부정 후기를 통해 개선해야할 서비스 영역을 도출할 수 있었다. 따라서, 본 연구에서 제안한 방법론을 사용하여 방대한 양의 후기 데이터로부터 서비스 개선 및 유지 영역을 발견할 수 있으리라 기대된다.

ICT 의료시설 기반에서 종사자의 소방안전 지식과 대처방법 인식수준 (ICT Medical Service Provider's Knowledge and level of recognizing how to cope with fire fighting safety)

  • 김자숙;김자옥;안영준
    • 한국전자통신학회논문지
    • /
    • 제9권1호
    • /
    • pp.51-60
    • /
    • 2014
  • 본 연구는 광주 전남지역 ICT 의료시설 기반에서 종사자를 대상으로 소방안전 지식과 대처방법 인식수준의 정도를 파악하고 차이를 조사하여 ICT 의료시설 기반에서 소방안전 대처방법 교육 매뉴얼의 기초자료를 제공하기 위하여 수행 되었다. 자료는 SPSS Win 14.0을 사용하여 분석하였다. 연구결과 ICT 의료시설 기반에서 종사자의 소방안전 지식은 10점 만점에 7.06점, 소방 대처방법 인식수준은 11점 만점에 6.61점이었다. ICT 의료시설 기반에서 종사자의 일반적 특성과 소방안전 대처방법 인식수준을 분석한 결과 성별(t=4.12, p<.001, 연령(${\chi}^2$=17.24, p<.001), 근무경력(${\chi}^2$=22.76, p<.001), 소방안전교육 경험 유무(t=6.10, p<.001), 소방안전에 대한 본인의 주관적 지식정도(${\chi}^2$=53.83, p<.001)에서 통계적으로 유의한 차이가 있었다. 따라서 ICT 의료시설 기반에서 종사자의 소방안전 대처를 증진하기 위해서는 강의 중심의 지식 전달 교육을 지양하고, 자기 주도적 학습, 개인별 맞춤학습, 협동 학습을 강조하는 다양한 콘텐츠 개발을 통한 실무 체험 중심의 소방안전 교육, 시뮬레이션을 이용한 환자분류체계별 배치와 광역 화재감지를 위한 적외선 레이저 연기검출, 다중포인트 통신 프로토콜에 의한 디지털 화재 방지 모니터링 시스템, 영상기반 화재검출, 화재감지를 위한 로봇 설계 및 테이터 처리등의 다학문적인 접근을 통한 ICT 의료시설 기반에서 소방안전 대처에 관한 교육 매뉴얼의 개발이 필요하다고 사료된다.