• 제목/요약/키워드: classification algorithm

검색결과 2,919건 처리시간 0.029초

LFSR을 이용한 패턴분류기의 생성 (Generation of Pattern Classifier using LFSRs)

  • 권숙희;조성진;최언숙;김한두;김나령
    • 한국전자통신학회논문지
    • /
    • 제9권6호
    • /
    • pp.673-679
    • /
    • 2014
  • 패턴분류기 설계의 중요한 조건은 데이터 처리량이 크고 저장 공간은 작고 낮은 가격대로 구현하는 것이다. Maji 등에 의해 제안된 MACA 기반의 패턴분류기는 DV와 DS를 사용하여 복잡도를 $O(n^3)$에서 O(n)으로 줄였다. 본 논문에서는 효율적으로 시간과 공간의 복잡성을 개선하기 위해 LFSR 기반 패턴 분류기를 생성하고 0-기본경로를 이용하여 DV를 구할 수 있는 방법을 제안한다. 그리고 생성한 패턴분류기의 DV와 끌개에 대해 살펴본다. n-비트 DS=(11 ${\cdots}$ 11)를 m개의 $DV_i$로 분할할 수 있고 다양한 패턴분류기를 생성할 수 있다.

딥러닝 방식의 웨어러블 센서를 사용한 미국식 수화 인식 시스템 (American Sign Language Recognition System Using Wearable Sensors with Deep Learning Approach)

  • 정택위;김범준
    • 한국전자통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.291-298
    • /
    • 2020
  • 수화는 청각 장애인이 다른 사람들과 의사소통할 수 있도록 설계된 것이다. 그러나 수화는 충분히 대중화되어 있지 않기 때문에 청각 장애인이 수화를 통해서 일반 사람들과 원활하게 의사소통하는 것은 쉽지 않은 문제이다. 이러한 문제점에 착안하여 본 논문에서는 웨어러블 컴퓨팅 및 딥러닝 기반 미국식 수화인식 시스템을 설계하고 구현하였다. 이를 위해서 본 연구에서는 손등과 손가락에 장착되는 총 6개의 IMUs(Inertial Measurement Unit) 센서로 구성된 시스템을 구현하고 이를 이용한 실험을 수행하여 156개 특징이 수집된 데이터 추출을 통해서 총 28개 단어에 대한 미국식 수화 인식 방법을 제안하였다. 특히 LSTM (Long Short-Term Memory) 알고리즘을 사용하여 최대 99.89%의 정확도를 달성할 수 있었고 향후 청각 장애인들의 의사소통에 큰 도움이 될 것으로 예상된다.

강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계 (Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases)

  • 최우용;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제24권6호
    • /
    • pp.586-591
    • /
    • 2014
  • 본 연구에서는 인공 벌 군집(ABC: Artificial Bee Colony) 알고리즘을 이용하여 주어진 레이더 데이터로부터 강수 사례와 비강수 사례를 분류하는 방사형 기저함수 신경회로망(RBFNNs: Radial Basis Function Neural Networks)분류기를 소개한다. 기상청에서 사용하고 있는 기상 레이더 데이터의 특성 분석을 통해 입력 데이터를 구성한다. 방사형 기저함수 신경회로망의 조건부에서는 Fuzzy C-Means 클러스터링 방법을 이용하여 적합도를 계산하고, 결론부에서는 최소자승법(LSE: Least Square Method)을 이용하여 다항식 계수를 추정한다. 추론부에서 최종출력 값은 퍼지 추론 방법을 이용하여 얻어진다. 제안된 분류기의 성능은 기상청에서 사용하는 QC와 CZ 데이터를 고려하여 비교 및 분석되어진다.

암반터널 예비설계를 위한 인공신경회로망 전문가 시스템의 개발 (Development of an Artificial Neural Network Expert System for Preliminary Design of Tunnel in Rock Masses)

  • 이철욱;문현구
    • 한국지반공학회지:지반
    • /
    • 제10권3호
    • /
    • pp.79-96
    • /
    • 1994
  • 인공신경회로망을 이용하여 터널굴착설계를 위한 전문가 시스템 NESTED를 개발하였다. 이를 위하여 지하 암반의 안정성을 평가할 수 있는 신경회로망 모델과 대표적인 암반분류법인 RMR과 Q 시스템 사이의 상관관계를 결정할 수 있는 신경회로망 모델을 사용하였다. 또한 사용된 모델과 전산화된 암반분류법 프로그램이 동일한 사용자 환경을 통해 운용될 수 있도록 통합 시스템을 구성하였다. NESTED에 사용된 신경회로망의 구조는 역전파 학습 알고리즘을 채용한 다층 역전파 신경 회로망이다. 전문가 시스템에 필요한 지식기반을 구축하기 위해 이전의 현장 시공사례로 학습과정을 수행함으로써 불완전하거나 오류가 포함된 정보를 처리할 수 있는 공학 데이터베이스를 개발하였다. 일련의 실험을 통해 전문가 시스템을 현장사례에 적용해보고 여기서 출력된 결과를 문헌에 보고된 자료와 비교하였다. 이 결과 암반의 파괴거동을 추정하고 이에 따른 보강시기의 변화를 정확히 예측하는 신경회로망의 추론능력을 확인할 수 있었다. 이처럼 본 연구를 통해 개발된 신경회로망 전문가 시스템을 암반터널에 적용할 경우 부족한 지질자료에 대해 합리적인 기준을 제공하고 터널의 예비설계에 필요한 보강설계를 제시할 수 있었다.

  • PDF

로우엔드 클러스터 센서 네트워크에서 위치 측정을 위한 지지 벡터 머신 (Constructing a Support Vector Machine for Localization on a Low-End Cluster Sensor Network)

  • 문상국
    • 한국정보통신학회논문지
    • /
    • 제18권12호
    • /
    • pp.2885-2890
    • /
    • 2014
  • 최근 기계학습 방법을 도입하여 센서 노드에 대한 위치를 파악하는 방법이 관심을 받고 있다. 많은 기계학습 알고리즘 중, 지지벡터머신은 프로그래밍 언어로 구현하기 간편하고, 병렬로 수행이 가능하다. 라즈베리파이는 작고 기능이 많아 센서 노드로 사용 시 인터넷 프로토콜을 사용하는 하둡 네트워크 클러스터 구성이 가능하다. 본 논문에서는 파이썬 프로그래밍 언어로 지지벡터머신을 구현하고, 5대의 라즈베리파이를 사용하여 실험적인 하둡 센서 네트워크와 5개의 노드를 가진 맵리듀스 하둡 소프트웨어 프레임워크를 구성하였다. 실험에서 우리는 다양한 파라미터를 변경해가면서 센서 네트워크를 구성하여 효율성, 자원분배, 처리속도를 비교하였다. 라즈베리파이의 컴퓨팅 파워와 메모리 용량은 부족했지만, 센서 클러스터의 노드 멤버의 역할을 충분히 수행하였고, 지지벡터머신 기계학습을 사용하여 센서 노드의 위치측정을 성공적으로 수행하였다.

선박 탑승자를 위한 다중 센서 기반의 스마트폰을 이용한 활동 인식 시스템 (Activity Recognition of Workers and Passengers onboard Ships Using Multimodal Sensors in a Smartphone)

  • 라지브 쿠마 피야레;이성로
    • 한국통신학회논문지
    • /
    • 제39C권9호
    • /
    • pp.811-819
    • /
    • 2014
  • 상황 인식은 유비쿼터스컴퓨팅 환경에 대한 진화를 변화시켰고 무선 센서네트워크 기술은 많은 응용기기에 대한 새로운 방법을 제시하였다. 특히, 행동 인식은 사람의 응용서비스를 제공하는데 있어 특정 사용자의 상황을 인식하는 핵심 요소로 의학, 취미, 군사 분야에서 폭넓은 응용분야를 갖고 있고 사용반경의 확대에서도 효율과 정확도를 높이는 방법에 크게 기여한다. 스마트폰 센서로부터 나오는 데이터로부터 프레임이 512인셈플 데이터를 얻어, 프레임간50%의 오버랩을 갖도록 하고 Machine Learning Algorithm 인 WEKA Experimenter (University of Waikato, Version 3.6.10)을 써서 데이더로부터 시간영역 특징값을 추출함으로써 행동 인식에 대한 99.33%의 정확도를 얻을 수 있었다. 또한, WEKA Experimenter의 사용기법인 C4.5 Decision Tree과 다른 방법인 BN, NB, SMO or Logistic Regression간의 비교실험을 하였다.

화소 밝기와 객체 이동을 이용한 비디오 샷 경계 탐지 알고리즘 (Shot Boundary Detection Algorithm by Compensating Pixel Brightness and Object Movement)

  • 이준구;한기선;유병문;황두성
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권5호
    • /
    • pp.35-42
    • /
    • 2013
  • 비디오 데이터를 효율적으로 검색, 정렬, 탐색, 분류하기 위해서는 프레임 간의 샷 전환 탐지가 선행되어야 한다. 프레임 간 화소 밝기와 객체 이동은 높은 탐지율을 보장하는 샷 탐지 알고리즘이 극복해야할 문제이다. 본 논문에서는 프레임의 블록화 및 객체의 이동과 프레임의 밝기를 고려하는 샷 탐지 방법을 제안한다. 먼저 연속하는 두 프레임 사이에서 발생할 수 있는 객체의 이동을 고려하여 계산된 히스토그램과 밝기 차이를 반영하는 모폴러지 팽창 연산을 이용하는 알고리즘을 제안한다. 다음으로 화소 밝기 차를 보상한 프레임 블록의 화소정보와 프레임의 전역적인 밝기 히스토그램의 변화를 함께 이용하는 샷 탐지 방법을 제안한다. 제안된 방법들은 국가기록원 소장 비디오 데이터에 대한 실험에서 화소 또는 히스토그램 기반 알고리즘에 비해 높은 샷 탐지율을 보였다.

한국인의 한방 체질진단 중 용모에 관한 연구, 20-48세 여자중심으로 (A Study of Korean's Face by Sasang Diagnosis Using Questionnaire and 3D AFRA(Automatic Face Recognition Apparatus) in Middle Aged Women)

  • 유정희;권진혁;이의주;김종원;신현상;박병주;이지원;이준희;고병희
    • 사상체질의학회지
    • /
    • 제23권2호
    • /
    • pp.194-207
    • /
    • 2011
  • 1. Objectives: This study is about a development of Sasang constitutional classification algorithm using facial information. 2. Methods: We analysed the datum of middle aged (20~48) women collected by multi-center researchers in 2007. And this study analysed the data of the measurement of the face by 3D-AFRA (3-Dimensional Automatic Face Recognition Apparatus) and the items of impression by SDQ. We used multiple comparison, exploratory discriminant analysis and clinical decision to select optimal 3D facial variables which will be input in discriminant analysis model. And we used univariate F values and stepwise discriminant function analysis to choose best impression variables. 3. Results and Conclusions: In this study, derived discriminant function's explanation power was 39% in female group. Diagnostic accuracy rate was 66.0% in female group. And in test sample, Sasang constitutional diagnostic accuracy rate was 56.9%. In this process we could help improve the objectification of Sasang constitution diagnosis.

양방향 LSTM을 적용한 단어의미 중의성 해소 감정분석 (Emotion Analysis Using a Bidirectional LSTM for Word Sense Disambiguation)

  • 기호연;신경식
    • 한국빅데이터학회지
    • /
    • 제5권1호
    • /
    • pp.197-208
    • /
    • 2020
  • 어휘적 중의성이란 동음이의어, 다의어와 같이 단어를 2개 이상의 의미로 해석할 수 있는 경우를 의미하며, 감정을 나타내는 어휘에서도 어휘적 중의성을 띄는 경우가 다수 존재한다. 이러한 어휘들은 인간의 심리를 투영한다는 점에서 구체적이고, 풍부한 맥락을 전달하는 특징이 있다. 본 연구에서는 양방향 LSTM을 적용하여 중의성을 해소한 감정 분류 모델을 제안한다. 주변 문맥의 정보를 충분히 반영한다면, 어휘적 중의성 문제를 해결하고, 문장이 나타내려는 감정을 하나로 압축할 수 있다는 가정을 기반으로 한다. 양방향 LSTM은 문맥 정보를 필요로 하는 자연어 처리 연구 분야에서 자주 활용되는 알고리즘으로 본 연구에서도 문맥을 학습하기 위해 활용하고자 한다. GloVe 임베딩을 본 연구 모델의 임베딩 층으로 사용했으며, LSTM, RNN 알고리즘을 적용한 모델과 비교하여 본 연구 모델의 성능을 확인하였다. 이러한 프레임워크는 SNS 사용자들의 감정을 소비 욕구로 연결시킬 수 있는 마케팅 등 다양한 분야에 기여할 수 있을 것이다.

머신러닝 기반 중노년층의 기능성 위장장애 예측 모델 구현 (Prediction model of peptic ulcer diseases in middle-aged and elderly adults based on machine learning)

  • 이범주
    • 문화기술의 융합
    • /
    • 제6권4호
    • /
    • pp.289-294
    • /
    • 2020
  • 기능성 위장장애는 Helicobacter pylori 감염 및 비 스테로이드성 항염증제의 사용 등의 원인으로 발생하는 소화기 계통 질환이다. 그동안 기능성 위장장애의 위험요인에 대한 많은 연구들이 수행되어졌으나, 한국인에 대한 기능성 위장장애 예측 모델 제시에 대한 연구는 없는 실정이다. 따라서 본 연구의 목적은 중년 및 노년층을 대상으로 인구학적정보, 비만정보, 혈액정보, 영양성분 정보를 바탕으로 머신러닝을 이용하여 기능성위장장애 예측 모델을 구현하고 평가하는 것이다. 모델생성을 위해 wrapper-based variable selection 메소드와 naive Bayes 알고리즘이 사용되었다. 여성 예측 모델의 분류 정확도는 0.712의 the area under the receiver operating characteristics curve(AUC) 값을 나타냈고, 남성에서는 여성보다 낮은 0.674의 AUC값이 나타났다. 이러한 연구결과는 향후 중년 및 노년층의 위장장애 질환의 예측과 예방에 활용될 수 있다.