• Title/Summary/Keyword: clamped- simply supported fraction laws

Search Result 4, Processing Time 0.02 seconds

Dynamic response with fraction laws: Eigen solution of clamped-simply supported rotating shell

  • Emad Ghandourah;Muzamal Hussain;Mohamed A. Khadimallah;Hamdi Ayed;Monzoor Ahmad;Lahcen Azrar;Abir Mouldi
    • Advances in nano research
    • /
    • v.17 no.5
    • /
    • pp.435-444
    • /
    • 2024
  • The shell problem in this work is modeled as a rotating cylindrical shell with three distinct volume fraction rules. There is a connection between polynomial, exponential, and trigonometric fraction laws and the governing equations for shell motion. The fundamental natural frequency is examined for several parameters, including height-radius and length-to-diameter ratios. The resulting backward and forward frequencies rise with rising height-to-radius ratios, whereas frequencies decrease with increasing length-to-radius ratios. Furthermore, as the angular speed increases, the forward and reverse frequencies decrease and increase, respectively. By using MATLAB coding, the eigen solutions of the frequency equation have been found. The findings for the clamped simply supported condition have been taken out of this numerical procedure in order to examine the properties of shell vibration. The generated results provide evidence for the applicability of the current shell model and are also supported by previously published material.

FG-based computational fracture of frequency up-conversion for bistablity of rotating shell: An effective numerical scheme

  • Hussain, Muzamal
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.367-376
    • /
    • 2022
  • Theoretical study of vibration distinctiveness of rotating cylindrical are examined for three volume fraction laws viz.: polynomial, exponential and trigonometric. These laws control functionally graded material composition in the shell radius direction. Functionally graded materials are controlled from two or more materials. In practice functionally graded material comprised of two constituent materials is used to form a cylindrical shell. For the current shell problem stainless steel and nickel are used for the shell structure. A functionally graded cylindrical shell is sanctioned into two types by interchanging order of constituent materials from inner and outer side for Type I and Type II cylindrical shell arrangement. Fabric composition of a functionally graded material in a shell thickness direction is controlled by volume fraction law. Variation of power law exponent brings change in frequency values. Influence of this physical change is investigated to evade future complications. This procedure is capable to cater any boundary condition by changing the axial wave number. But for simplicity, numerical results have been evaluated for clamped- simply supported rotating cylindrical shells. It has been observed from these results that shell frequency is bifurcated into two parts: one is related to the backward wave and other with forward wave. It is concluded that the value of backward frequency is some bit higher than that forward frequency. Influence of volume fraction laws have been examined on shell frequencies. Backward and forward frequency curves for a volume fraction law are upper than those related to two other volume fraction laws. The results generated furnish the evidence regarding applicability of present shell model and also verified by earlier published literature.

Monitoring and control of multiple fraction laws with ring based composite structure

  • Khadimallah, Mohamed A.;Hussain, Muzamal;Naeem, Muhammad Nawaz;Taj, Muhammad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.129-138
    • /
    • 2021
  • In present article, utilizing the Love shell theory with volume fraction laws for the cylindrical shells vibrations provides a governing equation for the distribution of material composition of material. Isotopic materials are the constituents of these rings. The position of a ring support has been taken along the radial direction. The Rayleigh-Ritz method with three different fraction laws gives birth to the shell frequency equation. Moreover, the effect of height- and length-to-radius ratio and angular speed is investigated. The results are depicted for circumferential wave number, length- and height-radius ratios with three laws. It is found that the backward and forward frequencies of exponential fraction law are sandwich between polynomial and trigonometric laws. It is examined that the backward and forward frequencies increase and decrease on increasing the ratio of height- and length-to-radius ratio. As the position of ring is enhanced for clamped simply supported and simply supported-simply supported boundary conditions, the frequencies go up. At mid-point, all the frequencies are higher and after that the frequencies decreases. The frequencies are same at initial and final stage and rust itself a bell shape. The shell is stabilized by ring supports to increase the stiffness and strength. Comparison is made for non-rotating and rotating cylindrical shell for the efficiency of the model. The results generated by computer software MATLAB.

Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory

  • Sobhy, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.401-415
    • /
    • 2017
  • In this article, hygro-thermo-mechanical vibration and buckling of exponentially graded (EG) nanoplates resting on two-parameter Pasternak foundations are studied using the four-unknown shear deformation plate theory. The material properties are presumed to change only in the thickness direction of the EG nanoplate according to two exponential laws distribution. The boundary conditions of the nanoplate may be simply supported, clamped, free or combination of them. To consider the small scale effect on forced frequencies and buckling, Eringen's differential form of nonlocal elasticity theory is employed. The accuracy of the present study is investigated considering the available solutions in literature. A detailed analysis is executed to study the influences of the plate aspect ratio, side-to-thickness ratio, temperature rise, moisture concentration and volume fraction distributions on the vibration and buckling of the nanoplates.