• 제목/요약/키워드: cladocerans

Search Result 64, Processing Time 0.019 seconds

Dynamics of Phytoplankton and Zooplankton of a Shallow Eutrophic Lake (lake llgam) (수심이 얕은 부영양 인공호(일감호)의 동 ${\cdot}$ 식물플랑크톤 동태학)

  • Kim, Ho-Sub;Park, Je-Chul;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.286-294
    • /
    • 2003
  • This study was attempted to understand seasonal dynamics of phyto- and zooplankton communities in shallow, eutrophic Lake llgam and to compare them with the PEG (Plankton Ecology Group) model. Seasonal succession pattern of phytoplankton community was similar to PEG model as Chlorophyceae and Baciliphyceae increase during spring and autumn fellowed by increase of Cyanophyceae. However, based on the cell density and biomass, a dominant phytoplankton community differed with PEG model: Cyanophyceae had been a dominant community throughout a year, except for ice-cover period during which Chlorophyceae was a dominant group. In spring, when ice melted and dissolved nutrients in water column increased, the increase of Chlorophyceae occurred: when nutrients (DIN and DIP) rapidly decreased, Cyanophyceae increase occurred. Microcystis, Oscillatoria, Lyngbya, Merismopedia were maior dominant species of Cyanophyceae and their cell density and/or biomass was the highest in October 2000 (12.9${\pm}$5.8${\times}10^5$ cells/ml, 3.5${\pm}$0.9${\times}10^3{\mu}gC/l$). Cyanophyceae biomass showed positive relationship with chlorophyll a ($r^2$ = 0.71,P< 0.001) and TP concentration ($r^2$ = 0.62, P< 0.001). Small-sized rotifers such as Keratella cochlearis, increased between March and May when Chlorophyceae increased. Both high standing crop of copepods and cladocerans, such as Diaphanosoma brachyrum and Bosmina longirostris occurred between June and September accompanied with the increase of Dinophyceae and Bacillariophyceae. There was no evidence that clear-water phase was caused by zooplankton grazing. The diversity and evenness index of phyto- and/or zooplankton increased with chlorophyll a concentration. These results suggest zooplankton grazing and limiting nutrient deficiency could lead to change of phytoplankton biomass, but not the phytoplankton community in Lake llgam.

Water Quality Variation and Biotic Community Characteristics in Juam Lake (2011) (주암호의 수질 변동 및 생물군집 특성(2011))

  • Song, Hyo-Jeong;Hwang, Kyung-Sub;Park, Jong-Hwan;Lee, Hak-Young;Kim, Jong-Sun;Kim, Hyun-Woo;Lim, Dong-Ok;Lee, Sung-Hwi;Lim, Byung-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.1
    • /
    • pp.37-44
    • /
    • 2013
  • This study was to investigate water quality and biotic community characteristics in Juam Lake. In water quality, water temperatures was $3.8{\sim}21.2^{\circ}C$, 6.7~8.6 in pH, $64{\sim}76{\mu}s\;cm^{-1}$ in Conductivity, $5.3{\sim}13.2mg\;L^{-1}$ in DO, $2.5{\sim}3.3mg\;L^{-1}$ in COD, $1.0{\sim}5.1mg\;L^{-1}$ in SS, $0.622{\sim}0.841mg\;L^{-1}$ in T-N, $0.007{\sim}0.019mg\;L^{-1}$ in T-P and $2.8{\sim}8.8mg\;m^{-3}$ in Chl-a. Revised Carlson's Index (TSIm) assessment using total phosphorus (TP) and chlorophyll-a domonstrated that the trophic states of Juam Lake were rated as mesotrophic. A total of 53 species of phytoplankton were identified. They were 28 Bacillariophyceae, 13 Chlorophyceae, 3 Cyanophyceae, and 9 Other algal taxa. The standing crops of phytoplankton was ranged from $113cells\;mL^{-1}$ to $2,909cells\;mL^{-1}$. A total of 16 species of zooplankton were identified (10 rotifers, 4 cladocerans and 2 copepods). Total zooplankton abundance was $309ind.\;L^{-1}$ to $435ind.\;L^{-1}$. The collected benthic macroinvertebrates from the surveyed sites in Juam Lake were 1,038 individuals, 33 species, 21 families and 12 orders. A dominant species was Uracanthella rufa and a subdominant species was Ecdyonurus kibunensis. Hydrophytes recorded from Juam Lake were identified 9 taxa. Emerged plants, floating plants among the hydrophytes was classified 8, 1 taxa, respectively. Ecosystem disturbance wildplant by Environment Ministry found were Paspalum distichum var. distichum and Ambrosia artemisiaefolia. A total of 30 species (6 families) were collected fishs from Juam Lake. There were 10 Korean endemic species (33.3% of collected species number) and 3 exotic species (10.0%).

Zooplankton Abundance in Korean Waters (한국근해 동물성 부유생물의 주요군의 양적 분포)

  • Park, Joo-suck
    • 한국해양학회지
    • /
    • v.8 no.1
    • /
    • pp.33-45
    • /
    • 1973
  • Plankton samples used for the present study were collected by the NORPAC net during the CSK cruises in the Korean waters in March and August, 1967. Regional and seasonal variations in the zooplankton biomass (wet weight, mg/㎥) were noticed in the Korean waters. In March the highest biomass, 130mg/㎥ on the average, occurred in the southern part of Japan Sea, but the lowest biomass of less than 50mg/㎥ occurred in the Yellow Sea and the western sea of Cheju Island Contrally, in August, the average biomass of 120mg/㎥ was measured in the Yellow Sea, the western sea of Cheju Island and the coastal waters of southern Korea, while the biomass of Japan Sea was the lowest of the regions surveyed. In comparison with the zooplankton biomass, total number of zooplankton per cubic meter of water strained also showed regional and seasonal fluctuations. In general, variations in the number of zooplankton specimens follows the same trend as in the biomass. The largest number, up to 800mg/㎥ on the average, occurred in the southern part of Japan Sea in March and the lowest number, less than 200mg/㎥ occurred in the Yellow Sea and the western sea of Cheju Island. In August, as shown by the biomass fluctuations, the largest number of zooplankton 850mg/㎥ on the average occurred in the Yellow Sea, the western sea of Cheju Island and the coastal region of southern Korea. But the lowest number of less than 500mg/㎥ was found in the Japan Sea. Among the various groups of zooplankton examined, the following were dominant components of the zooplankton population: Copepoda, Chaetognatha, Siphonophora, Euphausiacea, Cladocera, Appendicularia, and Amphipoda. The zooplankton conposition was significantly differed between the Japan Sea and Yellow Sea. Copepods which usually occupied over 66% in the Japan Sea and thd Korean Strait samples occupied only 42% of the catches in August, while cladocerans and chaetognaths were relatively abundant, i. e., 15 and 18% of the total organisms. The most dominant species of copepods and chaetognaths were Paracalanus parvus, Oithona similis, Acartia clausi, Calanus helgolandicus, Sagitta enflata, S. bedoti, S. elegans and S. crassa.

  • PDF

Relationship between Rainfall and Zooplankton Community Dynamics in a Riverine Wetland Ecosystem (Upo) (강 배후 습지생태계(우포)에서 강우량과 동물플랑크톤 군집 동태)

  • Kim, Hyun-Woo;Choi, Jong-Yun;La, Geung-Hwan;Jeong, Kwang-Seuk;Jo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.129-135
    • /
    • 2010
  • The relationship between rainfall variable and zooplankton dynamics was studied in the Upo wetland, an ecosystem of international importance. Water sampling was conducted on biweekly basis from January 2002 to December 2007 in the study site. The annual average of total rainfall was 1,324 mm during the study period. Total rainfall amount in 2003 (1,766 mm) was unusually high, while total rainfall amount in 2005 (975 mm) was exceptionally lower than the average. Most of basic limnological parameters (water temperature, dissolved oxygen, pH, conductivity and turbidity) in the study site were greatly influenced by the flooding events and rainfall amounts in summer. There were statistically significance between seasonal and inter-annual differences in zooplankton abundance and the total rainfall amount (ANOVA, P<0.05). Zooplankton abundance was high in summer (mean${\pm}$s.d.: $1,594{\pm}1,598\;Ind.\;L^{-1}$) and low in winter ($246{\pm}234\;Ind.\;L^{-1}$. The 47% of annual total zooplankton abundance in the study site were observed in summer. The seasonal pattern of rotifers was similar to that of total zooplankton. This reflected the fact that rotifers strongly dominated and occupied ca. 65% the total zooplankton abundance (annual mean: $398{\pm}1,139\;Ind.\;L^{-1}$, n=149), followed by cladocerans ($65{\pm}140\;Ind.\;L^{-1}$) and copepods ($58{\pm}84\;L^{-1}$). Planktonic rotifers such as Keratella cochlearis, Polyarthra spp. and Brachionus calyciflorus were dominant from winter to spring and attached rotifers such as Lecane spp., Monostyla spp. and Trichocerca spp., observed commonly from spring to fall. Among the environmental variables considered, rainfall in summer seemed to play the most important role in determining characteristics of zooplankton community dynamics in the Upo wetland.