• Title/Summary/Keyword: cladding tube

Search Result 126, Processing Time 0.027 seconds

A Comparison of Fretting Wear Characteristics of Zircaloy-4 Tube in Light Water and in Air (경수 및 공기중에서의 지르칼로이-4 튜브의 프레팅 마멸특성 비교)

  • 조광희;김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.303-309
    • /
    • 1999
  • The fretting wear behaviour of Zircaloy-4 tube used as the fuel rod cladding in PWR nuclear power plants has been investigated at the different test environment, in light water and in air as a function of slip amplitude, normal load, test duration and frequency. Zircaloy-4 tubes were used for both of oscillating and stationary specimens. A fretting wear tester was designed to be suitable for this fretting test. The wear volume and specific wear rate of Zircaloy-4 tube in water were greater than those in air under various slip amplitude. It was found that delaminate debris and surface cracks were observed at low slip amplitude and high load in water Experimental results showed that the light water accelerated the wear of Zircaloy-4 tube at low slip amplitude in fretting.

  • PDF

Simulation of Coextrusion Process of Cladded Finned Tube by Plasticine (동시 압출법에 의한 핀형 튜브 Cladding 공정의 Plasticine 압출 모사)

  • Lee, Hyun-Woo;Park, Jin-Sung;Kim, Woo-Sik;Shin, Dong-Hyuk;Kim, Yong-Seog
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.59-65
    • /
    • 1998
  • In this study an attempt was made to simulate the coextrusion process of the cladded finned tube manufacturing by extrusion of plasticine. The effects of the billet and the plate inserted between the ingot and extrusion die on the variation of clad thickness of the extruded tube were studied. The results showed that cladded tube with uniform thickness can be obtained by a proper combination of clad thickness of billet and the plate. The relative strength of the billet and clad materials did not affect significantly on the variation of the clad thickness of the extruded tubes.

  • PDF

Comparison of Fretting Wear Characteristics of Zircaloy-4 Tube in Light Water and in Air (지르칼로이-4 튜브 프레팅 마멸 특성의 환경 의존성과 마멸기구)

  • 조광희;김석삼
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.83-89
    • /
    • 1999
  • The fretting wear behaviour of Zircaloy-4 tube used as the fuel rod cladding in PWR nuclear power plants has been investigated at the different test environment, in light water and in air as a function of slip amplitude, normal load, test duration and frequency. Zircaloy-4 tubes were used for both of oscillating and stationary specimens. A fretting wear tester was designed to be suitable for this fretting test. The wear volume and specific wear rate of Zircaloy-4 tube in water was greater than those in air under various slip amplitude. Delaminates and surface cracks were observed at low slip amplitude and high load of fretting test in water, but the traces of adhesion and plowing were observed at and above 200 Um. The water accelerates the wear of Zircaloy-4 tube at lower slip amplitude in fretting.

Effect of Filament Winding Methods on Surface Roughness and Fiber Volume Fraction of SiCf/SiC Composite Tubes (SiCf/SiC 복합체 튜브의 표면조도 및 섬유 부피 분율에 미치는 필라멘트 와인딩 방법의 영향)

  • Kim, Daejong;Lee, Jongmin;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.359-363
    • /
    • 2013
  • Silicon carbide and its composites are being considered as a nuclear fuel cladding material for LWR nuclear reactors because they have a low neutron absorption cross section, low hydrogen production under accident conditions, and high strength at high temperatures. The SiC composite cladding tube considered in this study consists of three layers, monolith CVD SiC - $SiC_f$/SiC composite -monolith CVD SiC. The volume fraction of SiC fiber and surface roughness of the composite layer affect mechanical and corrosion properties of the cladding tube. In this study, various types of SiC fiber preforms with tubular shapes were fabricated by a filament winding method using two types of Tyranno SA3 grade SiC fibers with 800 filaments/yarn and 1600 filaments/yarn. After chemical vapor infiltration of the SiC matrix, the surface roughness and fiber volume fraction were measured. As filament counts were changed from 800 to 1600, the surface roughness increased but the fiber volume fraction decreased. The $SiC_f$/SiC composite with a bamboo-like winding pattern has a smaller surface roughness and a higher fiber volume fraction than that with a zigzag winding pattern.

Out-of-Pile Test for Yielding Behavior of PWR Fuel Cladding Material (노외 실험을 통한 가압경수형 핵연료 피복재의 항복거동연구)

  • Yi, Jae-Kyung;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.22-33
    • /
    • 1987
  • The confirmed integrity of nuclear fuel cladding materials is an important object during steady state and transient operations at nuclear power plant. In this context, the clad material yielding behavior is especially important because of pellet-clad gap expansion. During the steep power excursion, the in-pile irradiation behavior differences between uranium-dioxide fuel pellet and zircaloy clad induce the contact pressure between them. If this pressure reaches the zircaloy clad yield pressure, the zircaloy clad will be plastically deformed. After the reactor power resumed to normal state, this plastic permanent expansion of clad tube give rise to the pellet-clad gap expansion. In this paper, the simple mandrel expansion test method which utilizes thermal expansion difference between copper mandrel and zircaloy tube was adopted to simulate this phenomenon. That is, copper mandrel which has approximately three times of thermal expansion coefficient of zircaloy-4 (PWR fuel cladding material) were used in this experiment at the temperature range from 400C to 700C. The measured plastic expansion of zircaloy outer radius and derived mathematical relations give the yield pressure, yield stress of zircaloy-4 clad at the various clad wall temperatures, the activation energy of zircaloy tube yielding, and pellet-clad gap expansion. The obtained results are in good agreement with previous experimental results. The mathematical analysis and simple test method prove to be a reliable and simple technique to assess the yielding behavior and gap expansion measurement between zircaloy-4 tube and uranium-dioxide fuel pellet under biaxial stress conditions.

  • PDF

HEAT-UP AND COOL-DOWN TEMPERATURE-DEPENDENT HYDRIDE REORIENTATION BEHAVIORS IN ZIRCONIUM ALLOY CLADDING TUBES

  • Won, Ju-Jin;Kim, Myeong-Su;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.681-688
    • /
    • 2014
  • Hydride reorientation behaviors of PWR cladding tubes under typical interim dry storage conditions were investigated with the use of as-received 250 and 485ppm hydrogen-charged Zr-Nb alloy cladding tubes. In order to evaluate the effect of typical cool-down processes on the radial hydride precipitation, two terminal heat-up temperatures of 300 and $400^{\circ}C$, as well as two terminal cool-down temperatures of 200 and $300^{\circ}C$, were considered. In addition, two cooling rates of 2.5 and $8.0^{\circ}C/min$ during the cool-down processes were taken into account along with zero stress or a tensile hoop stress of 150MPa. It was found that the 250ppm hydrogen-charged specimen experiencing the higher terminal heat-up temperature and the lower terminal cool-down temperature generated the highest number of radial hydrides during the cool-down process under 150MPa hoop tensile stress, which may be explained by terminal solid hydrogen solubilities for precipitation, and dissolution and remaining circumferential hydrides at the terminal heat-up temperatures. In addition, the slower cool-down rate generates the larger number of radial hydrides due to a cooling rate-dependent, longer residence time at a relatively high temperature that can accelerate the radial hydride nucleation and growth.

A Systematic Approach for Mechanical Integrity Evaluation on the Degraded Cladding Tube of Spent Nuclear Fuel Under Transportation Pinch Force

  • Lee, Seong-Ki;Park, Joon-Kyoo;Kim, Jae-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.307-322
    • /
    • 2021
  • This study developed an analytical methodology for the mechanical integrity of spent nuclear fuel (SNF) cladding tubes under external pinch loads during transportation, with reference to the failure mode specified in the relevant guidelines. Special consideration was given to the degraded characteristics of SNF during dry storage, including oxide and hydride contents and orientations. The developed framework reflected a composite cladding model of elastic and plastic analysis approaches and correlation equations related to the mechanical parameters. The established models were employed for modeling the finite elements by coding their physical behaviors. A mechanical integrity evaluation of 14 × 14 PWR SNF was performed using this system. To ensure that the damage criteria met the applicable legal requirements, stress-strain analysis results were separated into elastic and plastic regions with the concept of strain energy, considering both normal and hypothetical accident conditions. Probabilistic procedures using Monte Carlo simulations and reliability evaluations were included. The evaluation results showed no probability of damage under the normal conditions, whereas there were small but considerably low probabilities under accident conditions. These results indicate that the proposed approach is a reliable predictor of SNF mechanical integrity.

Evaluation of Optimized Ring Specimen Shape for the Hoop Behavior Test of Nuclear Fuel Clad Tube (핵연료 피복관의 후우프 거동시험을 위한 시편의 최적형상 평가)

  • 서기석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.171-178
    • /
    • 2000
  • In order to evaluate the tensile behaviors of hoop direction for the nuclear fuel cladding tubes the shapes of specimen and jig fixtures for the ring test are decided with various conditions under the elastic-large plastic deformations. The axial displacement of the jig cylinders is converted to the circumferential direction elongations of specimen. The stress distributions on specimen are depended on the radii and locations of specimen and jig size and central angle. Therefore we calculated the stress distributions and decided the optimum shapes to get the uniform stress in the area of specimen gage length. Form the analysis the stress distributions in gate area are reviewed with the radii and location of specimen notch and the central angle of jig cylinder,. The optimum shapes of specimen and jig are proposed to the clad tube having 10.62 mm in diameter and 0.63mm in thickness for 16x16 PWR nuclear fuel assembly.

  • PDF

The effect of neutron irradiation on hydride reorientation and mechanical property degradation of zirconium alloy cladding

  • Jang, Ki-Nam;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1472-1482
    • /
    • 2017
  • Zirconium alloy cladding tube specimens were irradiated at $380^{\circ}C$ up to a fast neutron fluence of $7.5{\times}10^{24}n/m^2$ in a research reactor to investigate the effect of neutron irradiation on hydride reorientation and mechanical property degradation. Cool-down tests from $400^{\circ}C$ to $200^{\circ}C$ under 150 MPa tensile hoop stress were performed. These tests indicate that the irradiated specimens generated a smaller radial hydride fraction than did the unirradiated specimens and that higher hydrogen content generated a smaller radial hydride fraction. The irradiated specimens of 500 ppm-H showed smaller ultimate tensile strength and plastic strain than those characteristics of the 250 ppm-H specimens. This mechanical property degradation caused by neutron irradiation can be explained by tensile hoop stress-induced microcrack formation on the hydrides in the irradiation-damaged matrix and subsequent microcrack propagation along the hydrides and/or through the matrix.

The Principle and Application of the Explosive Welding (폭발용접의 원리와 응용)

  • 성상철;심상한;이병일
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.13-23
    • /
    • 1997
  • 폭발용접은 화약의 폭발에 의한 충격 에너지를 이용하여 금속을 접합시키는 방법으로서 화약의 폭발에 의해 생기는 순간적인 높은 에너지를 이용하는 접합법이다. 1944년에 처음으로 폭발용접의 기술적, 상업적인 이점으로 인해 수요가 증가하고 있는 실정이다. 적용 예는 거대한 판재의 cladding을 포함하여 cladding nozzle, tube 와 tubeplate의 접합, pipe와 pipe의 접합등에 사용되고 있다. 종래의 용접법으로는 용접이 곤란하거나 불가능한 것으로 생각되었던 이종금속에 대해서는 적용이 가능하 고, 용접에 의한 열영향을 받지 않으며 용접 속도가 대단히 빠르다는 잇점이 있다. 또한 용접의 차이가 커서 접합이 곤란한 금속을 폭발용접하면 이음부는 충분한 강도를 가지면서 용이하게 접합할 수 있는 것이 큰 특징이다. 대부분의 금속은 폭발용접이 가능하지만 폭발의 충격에 의해서 균열이 발생되기 쉽고 주철과 같이 취약한 금속 및 Mg을 함유한 알루미늄 합금(순 알루미늄과는 접합 가능함)등은 이 용접법을 사용하기 는 곤란하다. 시공상의 특징으로는 특별한 기계 장치가 필요하지 않고 모재가 판재 혹은 파이프상이면 모재 두께에 제한 받지 않고, 어떠한 형태와도 가능하기 때문에 다품종, 소량생산이 가능하다. 한편 접합시에 화약을 사용하기 때문에 취급에 있어서 주의를 요하고 큰 폭발음 때문에 용접장소의 제한을 받는다는 것이다.

  • PDF