• 제목/요약/키워드: civil infrastructures

검색결과 303건 처리시간 0.022초

Performance of steel beams strengthened with pultruded CFRP plate under various exposures

  • Gholami, M.;Sam, A.R. Mohd;Marsono, A.K.;Tahir, M.M.;Faridmehr, I.
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.999-1022
    • /
    • 2016
  • The use of Carbon Fiber Reinforced Polymer (CFRP) to strengthen steel structures has attracted the attention of researchers greatly. Previous studies demonstrated bonding of CFRP plates to the steel sections has been a successful method to increase the mechanical properties. However, the main limitation to popular use of steel/CFRP strengthening system is the concern on durability of bonding between steel and CFRP in various environmental conditions. The paper evaluates the performance of I-section steel beams strengthened with pultruded CFRP plate on the bottom flange after exposure to diverse conditions including natural tropical climate, wet/dry cycles, plain water, salt water and acidic solution. Four-point bending tests were performed at specific intervals and the mechanical properties were compared to the control beam. Besides, the ductility of the strengthened beams and distribution of shear stress in adhesive layer were investigated thoroughly. The study found the adhesive layer was the critical part and the performance of the system related directly to its behavior. The highest strength degradation was observed for the beams immersed in salt water around 18% after 8 months exposure. Besides, the ductility of all strengthened beams increased after exposure. A theoretical procedure was employed to model the degradation of epoxy adhesive.

구조물 건전성 감시를 위한 스마트 PZT센서의 적용성 연구 (Application of smart piezoelectric transducers to structural health monitoring)

  • Park, Seung-Hee;Yi, Jin-Hak;Lee, Jong-Jae;Yun, Chung-Bang;Noh, Yong-Rae
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.549-555
    • /
    • 2003
  • The objective of かis study is to investigate the feasibility of piezoelectric transducers as a damage detection system for civil infrastructures. There have been considerable amount of efforts by the modal analysis community to localize damage and evaluate its severity without looking at a reliable way to excite the structure. The detection of damages by modal analysis and similar vibration techniques depends upon the knowledge and estimation of various modal parameters. In addition to the associated difficulties, such low-frequency dynamic response based techniques fail to detect incipient damages. Smart piezoelectric ceramic (PZT) transducers which act as both actuators and sensors in a self-analyzing manner are emerging to be effective in non-parametric health monitoring of structural systems. In this paper, we present the results of an experimental study for the detection of damages using smart PZT transducers on the steel plate. The method of extracting the impedance characteristics of the PZT transducer, which is electro-mechanically coupled to the host structure, is adopted for damage detection. Two damages are simulated and assessed by the bonded PZT transducers for characterization. The experimental results verified the efficacy of the proposed approach and provided a demonstration of good robustness at the realistic steel structures, emphasizing the great potential for developing an automated in situ structural health monitoring system for application to large civil infrastructures without the need to blow the modal parameters.

  • PDF

토목 구조물의 PZT Impedance 기반 손상추정기법 (PZT Impedance-based Damage Detection for Civil Infrastructures)

  • S. H. Park;Y. Roh;C. B. Yun;J. H. Yi
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.373-380
    • /
    • 2004
  • This paper presents the feasibility of an impedance-based damage detection technique using piezoelectric (PZT) transducers for civil infrastructures such as steel bridges. The impedance-based damage detection method is based on monitoring the changes in the electrical impedance. Those changes in the electrical impedance are due to the electro-mechanical coupling property of the piezoelectric material and structure. An effective integrated structural health monitoring system must include a statistical process of damage detection that is automated and real time assessment of damage in the structure. Once measured, damage sensitive features from this impedance change can be statistically quantified for various damage cases. The results of the experimental study on three kinds of structural members show that cracks or loosened bolts/nuts near the PZT sensors may be effectively detected by monitoring the shifts of the resonant frequencies. The root mean square (RMS) deviations of impedance functions between before and after damages were also considered as a damage indicator. The subsequent statistical methods using the impedance signature of the PZT sensors were investigated.

  • PDF

Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge

  • Zahrai, Seyed Mehdi;Froozanfar, Mohammad
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.449-466
    • /
    • 2019
  • Cable-stayed bridges are attractive due to their beauty, reducing material consumption, less harm to the environment and so on, in comparison with other kinds of bridges. As a massive structure with long period and low damping (0.3 to 2%) under many dynamic loads, these bridges are susceptible to fatigue, serviceability disorder, damage or even collapse. Tuned Mass Damper (TMD) is a suitable controlling system to reduce the vibrations and prevent the threats in such bridges. In this paper, Multi Tuned Mass Damper (MTMD) system is added to the Ahvaz cable stayed Bridge in Iran, to reduce its seismic vibrations. First, the bridge is modeled in SAP2000 followed with result verification. Dead and live loads and the moving loads have been assigned to the bridge. Then the finite element model is developed in OpenSees, with the goal of running a nonlinear time-history analysis. Three far-field and three near-field earthquake records are imposed to the model after scaling to the PGA of 0.25 g, 0.4 g, 0.55 g and 0.7 g. Two MTMD systems, passive and active, with the number of TMDs from 1 to 8, are placed in specific points of the main span of bridge, adding a total mass ratio of 1 to 10% to the bridge. The parameters of the TMDs are optimized using Genetic Algorithm (GA). Also, the optimum force for active control is achieved by Fuzzy Logic Control (FLC). The results showed that the maximum displacement of the center of the bridge main span reduced 33% and 48% respectively by adding passive and active MTMD systems. The RMS of displacement reduced 37% and 47%, the velocity 36% and 42% and also the base shear in pylons, 27% and 47%, respectively by adding passive and active systems, in the best cases.

Damage identification in a wrought iron railway bridge using the inverse analysis of the static stress response under rail traffic loading

  • Sidali Iglouli;Nadir Boumechra;Karim Hamdaoui
    • Smart Structures and Systems
    • /
    • 제32권3호
    • /
    • pp.153-166
    • /
    • 2023
  • Health monitoring of civil infrastructures, in particular, old bridges that are still in service, has become more than necessary, given the risk that a possible degradation or failure of these infrastructures can induce on the safety of users in addition to the resulting commercial and economic impact. Bridge integrity assessment has attracted significant research efforts over the past forty years with the aim of developing new damage identification methods applicable to real structures. The bridge of Ouled Mimoun (Tlemcen, Algeria) is one of the oldest railway structure in the country. It was built in 1889. This bridge, which is too low with respect to the level of the road, has suffered multiple shocks from various machines that caused considerable damage to its central part. The present work aims to analyze the stability of this bridge by identifying damages and evaluating the damage rate in different parts of the structure on the basis of a finite element model. The applied method is based on an inverse analysis of the normal stress responses that were calculated from the corresponding recorded strains, during the passage of a real train, by means of a set of strain gauges placed on certain elements of the bridge. The results obtained from the inverse analysis made it possible to successfully locate areas that were really damaged and to estimate the damage rate. These results were also used to detect an excessive rigidity in certain elements due to the presence of plates, which were neglected in the numerical reference model. In the case of the continuous bridge monitoring, this developed method will be a very powerful tool as a smart health monitoring system, allowing engineers to take in time decisions in the event of bridge damage.

가속도 응답을 이용한 이상치 해석 기반 역사 구조 건전성 평가 기법 개발 (Structural Health Monitoring Methodology based on Outlier Analysis using Acceleration of Subway Stations)

  • 신정열;안태기;이창길;박승희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.281-286
    • /
    • 2011
  • Station structures, one of important infrastructures, which have been being operated since the 1970s, are especially vulnerable to even the medium-level earthquake and they could be damaged by long-term internal or external vibrations such as ambient vibrations. Recently, much attention has been paid to real-time monitoring of the fatal defect or long-term deterioration of civil infrastructures to ensure their safety and adequate performance throughout their life span. In this study, a structural health monitoring methodology using acceleration responses is proposed to evaluate the health-state of the station structures and to detect initial damage-stage. A damage index is developed using the acceleration data and it is applied to outlier analysis, one of unsupervised learning based pattern recognition methods. A threshold value for the outlier analysis is determined based on confidence level of the probabilistic distribution of the acceleration data. The probabilistic distribution is selected according to the feature of the collected data.

  • PDF

구조물의 3차원 설계 패러다임을 위한 지침에 대한 고찰 (Investigation on the 3-D design guidelines of structures)

  • 심창수;김용한;전승민;곽태영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.301-306
    • /
    • 2007
  • Design of civil infrastructures is generally based on 2-D drawings and analyses. Design provisions also specify the limit states using member based equations. Most construction projects are done through collaboration of engineers who have different specialized knowledge. Information technologies can dramatically enhance the performance of the collaboration. For the information transfer, we need a mediator between engineers. Object based 3-D models are useful for the communication and for the owners who have to maintain whole the information of infrastructures. In this paper, basic guidelines for the 3-D design according to design phases. Adequate interoperability of 3-D objects from any CAD system is essential for the collaboration. Owners, contractors and design consultants were considered as users of 3-D objects. Cost and performance of each design phases was investigated through the existing data.

  • PDF

Sensors, smart structures technology and steel structures

  • Liu, Shih-Chi
    • Smart Structures and Systems
    • /
    • 제4권5호
    • /
    • pp.517-530
    • /
    • 2008
  • This paper deals with civil infrastructures in general, sensor and smart structure technology, and smart steel structures in particular. Smart structures technology, an integrated engineering field comprising sensor technology, structural control, smart materials and structural health monitoring, could dramatically transform and revolutionize the design, construction and maintenance of civil engineering structures. The central core of this technology is sensor and sensor networks that provide the essential data input in real time for condition assessment and decision making. Sensors and robust monitoring algorithms that can reliably detect the occurrence, location, and severity of damages such as crack and corrosion in steel structures will lead to increased levels of safety for civil infrastructure, and may significantly cut maintenance or repair cost through early detection. The emphasis of this paper is on sensor technology with a potential use in steel structures.

국내 사회기반시설물에 대한 스마트 구조기술의 연구현황 (Smart Structure Technologies for Civil Infrastructures in Korea)

  • 윤정방;이진학
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.273-276
    • /
    • 2006
  • In this paper the recent research and application activities on smart structure technologies for civil infra structures in Korea are briefly introduced. The developments of structural health monitoring systems and effective retrofit/maintenance methodologies for infra structures have become active in Korea since the middle of 1990's, as the number of the deteriorated infra structures, mostly built on the rapidly industrialized period of 1970's, has increased very rapidly. Discussions are made on smart sensors, non destructive technologies, monitoring and assessment methods and systems for civil infra structures.

  • PDF

Magnetic Resonance-Based Wireless Power Transmission through Concrete Structures

  • Kim, Ji-Min;Han, Minseok;Sohn, Hoon
    • Journal of electromagnetic engineering and science
    • /
    • 제15권2호
    • /
    • pp.104-110
    • /
    • 2015
  • As civil infrastructures continue to deteriorate, the demand for structural health monitoring (SHM) has increased. Despite its outstanding capability for damage identification, many conventional SHM techniques are restricted to huge structures because of their wired system for data and power transmission. Although wireless data transmission using radio-frequency techniques has emerged vis-$\grave{a}$-vis wireless sensors in SHM, the power supply issue is still unsolved. Normal batteries cannot support civil infrastructure for no longer than a few decades. In this study, we develop a magnetic resonance-based wireless power transmission system, and its performance is validated in three different mediums: air, unreinforced concrete, and reinforced concrete. The effect of concrete and steel rebars is analyzed.