• Title/Summary/Keyword: civil infrastructure systems

Search Result 273, Processing Time 0.029 seconds

Bio-inspired self powered nervous system for civil structures

  • Shoureshi, Rahmat A.;Lim, Sun W.
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.139-152
    • /
    • 2009
  • Globally, civil infrastructures are deteriorating at an alarming rate caused by overuse, overloading, aging, damage or failure due to natural or man-made hazards. With such a vast network of deteriorating infrastructure, there is a growing interest in continuous monitoring technologies. In order to provide a true distributed sensor and control system for civil structures, we are developing a Structural Nervous System that mimics key attributes of a human nervous system. This nervous system is made up of building blocks that are designed based on mechanoreceptors as a fundamentally new approach for the development of a structural health monitoring and diagnostic system that utilizes the recently developed piezo-fibers capable of sensing and actuation. In particular, our research has been focused on producing a sensory nervous system for civil structures by using piezo-fibers as sensory receptors, nerve fibers, neuronal pools, and spinocervical tract to the nodal and central processing units. This paper presents up to date results of our research, including the design and analysis of the structural nervous system.

Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)

  • Khorami, M.;Khorami, M.;Alvansazyazdi, M.;Shariati, M.;Zandi, Y.;Jalali, A.;Tahir, M.M.
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.531-538
    • /
    • 2017
  • In this paper, the seismic behavior of BRBF structures is studied and compared with special concentric braced frames (SCBF). To this purpose, three BRBF and three SCBF structures with 3, 5 and 10 stories are designed based on AISC360-5 and modelled using OpenSees. These structures are loaded in accordance with ASCE/SEI 7-10. Incremental nonlinear dynamic analysis (IDA) are performed on these structures for 28 different accelerograms and the median IDA curves are used to compare seismic capacity of these two systems. Results obtained, indicates that BRBF systems provide higher capacity for the target performance level in comparison with SCBF systems. And structures with high altitude (in this study, 5 and 10 stories) with the possibility of exceeding the collapse prevention performance level, further than lower altitude (here 3 floors) structures.

Synchronized sensing for wireless monitoring of large structures

  • Kim, Robin E.;Li, Jian;Spencer, Billie F. Jr;Nagayama, Tomonori;Mechitov, Kirill A.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.885-909
    • /
    • 2016
  • Advances in low-cost wireless sensing have made instrumentation of large civil infrastructure systems with dense arrays of wireless sensors possible. A critical issue with regard to effective use of the information harvested from these sensors is synchronized sensing. Although a number of synchronization methods have been developed, most provide only clock synchronization. Synchronized sensing requires not only clock synchronization among wireless nodes, but also synchronization of the data. Existing synchronization protocols are generally limited to networks of modest size in which all sensor nodes are within a limited distance from a central base station. The scale of civil infrastructure is often too large to be covered by a single wireless sensor network. Multiple independent networks have been installed, and post-facto synchronization schemes have been developed and applied with some success. In this paper, we present a new approach to achieving synchronized sensing among multiple networks using the Pulse-Per-Second signals from low-cost GPS receivers. The method is implemented and verified on the Imote2 sensor platform using TinyOS to achieve $50{\mu}s$ synchronization accuracy of the measured data for multiple networks. These results demonstrate that the proposed approach is highly-scalable, realizing precise synchronized sensing that is necessary for effective structural health monitoring.

RELTSYS: A computer program for life prediction of deteriorating systems

  • Enright, Michael P.;Frangopol, Dan M.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.557-568
    • /
    • 2000
  • As time-variant reliability approaches become increasingly used for service life prediction of the aging infrastructure, the demand for computer solution methods continues to increase. Effcient computer techniques have become well established for the reliability analysis of structural systems. Thus far, however, this is largely limited to time-invariant reliability problems. Therefore, the requirements for time-variant reliability prediction of deteriorating structural systems under time-variant loads have remained incomplete. This study presents a computer program for $\underline{REL}$iability of $\underline{T}$ime-Variant $\underline{SYS}$tems, RELTSYS. This program uses a combined technique of adaptive importance sampling, numerical integration, and fault tree analysis to compute time-variant reliabilities of individual components and systems. Time-invariant quantities are generated using Monte Carlo simulation, whereas time-variant quantities are evaluated using numerical integration. Load distribution and post-failure redistribution are considered using fault tree analysis. The strengths and limitations of RELTSYS are presented via a numerical example.

Determination of a priority for leakage restoration considering the scale of damage in for water distribution systems (피해규모를 고려한 용수공급시스템 누수복구 우선순위 선정)

  • Kim, Ryul;Kwon, Hui Geun;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.679-690
    • /
    • 2023
  • Leakage is one of the representative abnormal conditions in Water distribution systems (WDSs). Leakage can potentially occur and cause immediate economic and hydraulic damage upon occurrence. Therefore, leakage detection is essential, but WDSs are located underground, it is difficult. Moreover, when multiple leakage occurs, it is required to prioritize restoration according to the scale and location of the leakage, applying for an optimal restoration framework can be advantageous in terms of system resilience. In this study, various leakage scenarios were generated based on the WDSs hydraulic model, and leakage detection was carried out containing location and scale using a Deep learning-based model. Finally, the leakage location and scale obtained from the detection results were used as a factor for the priority of leakage restoration, and the results of the priority of leakage restoration were derived. The priority of leakage restoration considered not only hydraulic factors but also socio-economic factors (e.g., leakage scale, important facilities).

Adopting Cloud Service in the National Spatial Data Infrastructure

  • Youn, Junhee
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.676-677
    • /
    • 2015
  • In Korea, NSDI(National Spatial Data Infrastructure) was implemented for integrating and sharing the nationally generated spatial data. One of the main roles of implementing NSDI is providing spatial data to public agencies. And now, the establishment plan for NSDI with the technical advancement should be needed. This paper deals with the technical aspects of adopting cloud service in the NSDI. First, we propose the concept for target system, which shows the current and future NSDI. In the future NSDI model, GIS cloud and governance systems are included. Service functions for cloud system and infrastructure implementation design directions are derived. Finally, governance system implementation plan is described. This research will contribute to the implementation of NSDI cloud service system.

  • PDF

A Study on the Application of Korean Road Management Model to Developing Country : Case Study of Mongolia (한국 도로관리 모델의 개도국 적용에 관한 연구 : 몽골을 중심으로)

  • Buuveibaatar, Munkhbaatar;Shin, Sung pil;Kim, Moon gie
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.222-232
    • /
    • 2019
  • Mongolia is a developing country with a smaller population living across a large territory where infrastructure is underdeveloped. The country has been actively implementing road construction in recent years. The Mongolian government has increased investments in new road construction, but funding for major maintenance or reconstruction projects declined between 2012 and 2016. On the other hand, road network management has not been implemented owing to insufficient road maintenance and If the road network expands, there is a risk that the cost of overall maintenance will increase significantly in the future. Therefore, in order to cope with these problems, this study reviewed applying Korean road model to Mongolia for systematic management of road infrastructure.

Influence of time delay and saturation capacity to the response of controlled structures under earthquake excitations

  • Pnevmatikos, Nikos G.;Gantes, Charis J.
    • Smart Structures and Systems
    • /
    • v.8 no.5
    • /
    • pp.449-470
    • /
    • 2011
  • During the last thirty years many structural control concepts have been proposed for the reduction of the structural response caused by earthquake excitations. Their research and implementation in practice have shown that seismic control of structures has a lot of potential but also many limitations. In this paper the importance of two practical issues, time delay and saturation effect, on the performance of controlled structures, is discussed. Their influence, both separately and in interaction, on the response of structures controlled by a modified pole placement algorithm is investigated. Characteristic buildings controlled by this algorithm and subjected to dynamic loads, such as harmonic signals and actual seismic events, are analyzed for a range of levels of time delay and saturation capacity of the control devices. The response reduction surfaces for the combined influence of time delay and force saturation of the controlled buildings are obtained. Conclusions regarding the choice of the control system and the desired properties of the control devices are drawn.

Analysis of NEESgrid Computing and System for Korean Construction Test Equipments Infrastructure (NEESgrid 시스템의 구성과 기능별 역할 분석을 통한 우리나라 건설실험시설의 네트워크 시스템 구축)

  • Jeong, Tai Kyeong;Shim, Nak Hoon;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.689-692
    • /
    • 2006
  • This paper presents the developments of Grid computing architecture which is use many data and resources from distributed and parallel system for construction test equipments, i.e., large scale computer networks meant to provide access to massive computational facilities for very large communities of users, drawing upon experiences of existing Grids architecture. In this paper, we present an efficient way to construct a construction test equipment infrastructure.

Design, calibration and application of wireless sensors for structural global and local monitoring of civil infrastructures

  • Yu, Yan;Ou, Jinping;Li, Hui
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.641-659
    • /
    • 2010
  • Structural Health Monitoring (SHM) gradually becomes a technique for ensuring the health and safety of civil infrastructures and is also an important approach for the research of the damage accumulation and disaster evolving characteristics of civil infrastructures. It is attracting prodigious research interests and the active development interests of scientists and engineers because a great number of civil infrastructures are planned and built every year in mainland China. In a SHM system the sheer number of accompanying wires, fiber optic cables, and other physical transmission medium is usually prohibitive, particularly for such structures as offshore platforms and long-span structures. Fortunately, with recent advances in technologies in sensing, wireless communication, and micro electro mechanical systems (MEMS), wireless sensor technique has been developing rapidly and is being used gradually in the SHM of civil engineering structures. In this paper, some recent advances in the research, development, and implementation of wireless sensors for the SHM of civil infrastructures in mainland China, especially in Dalian University of Technology (DUT) and Harbin Institute of Technology (HIT), are introduced. Firstly, a kind of wireless digital acceleration sensors for structural global monitoring is designed and validated in an offshore structure model. Secondly, wireless inclination sensor systems based on Frequency-hopping techniques are developed and applied successfully to swing monitoring of large-scale hook structures. Thirdly, wireless acquisition systems integrating with different sensing materials, such as Polyvinylidene Fluoride(PVDF), strain gauge, piezoresistive stress/strain sensors fabricated by using the nickel powder-filled cement-based composite, are proposed for structural local monitoring, and validating the characteristics of the above materials. Finally, solutions to the key problem of finite energy for wireless sensors networks are discussed, with future works also being introduced, for example, the wireless sensor networks powered by corrosion signal for corrosion monitoring and rapid diagnosis for large structures.