• 제목/요약/키워드: civil infrastructure systems

검색결과 273건 처리시간 0.025초

Survey on robotics and automation technologies for civil infrastructure

  • Myung, Hyun;Wang, Yang;Kang, Shih-Chung Jessy;Chen, XiaoQi
    • Smart Structures and Systems
    • /
    • 제13권6호
    • /
    • pp.891-899
    • /
    • 2014
  • Over the past several decades, substantial amounts of sensors and sensing systems have been developed for civil infrastructure systems. This special issue focuses on state-of-the-art robotics and automation technologies, including construction automation, robotics, instrumentation, monitoring, inspection, control, and rehabilitation for civil infrastructure. The issue also covers construction informatics supporting sensing, analysis and design activities needed to operate smart and sustainable civil infrastructure. Examples include robotic systems applied to civil infrastructure and equipped with various sensing technologies, such as optical sensors, laser sensors, wireless sensors, multi-sensor fusion, etc. This special issue is published in an effort to disseminate current advances of various robotics and automation technologies for civil infrastructure and built environment.

Structural monitoring and identification of civil infrastructure in the United States

  • Nagarajaiah, Satish;Erazo, Kalil
    • Structural Monitoring and Maintenance
    • /
    • 제3권1호
    • /
    • pp.51-69
    • /
    • 2016
  • Monitoring the performance and estimating the remaining useful life of aging civil infrastructure in the United States has been identified as a major objective in the civil engineering community. Structural health monitoring has emerged as a central tool to fulfill this objective. This paper presents a review of the major structural monitoring programs that have been recently implemented in the United States, focusing on the integrity and performance assessment of large-scale structural systems. Applications where response data from a monitoring program have been used to detect and correct structural deficiencies are highlighted. These applications include (but are not limited to): i) Post-earthquake damage assessment of buildings and bridges; ii) Monitoring of cables vibration in cable-stayed bridges; iii) Evaluation of the effectiveness of technologies for retrofit and seismic protection, such as base isolation systems; and iv) Structural damage assessment of bridges after impact loads resulting from ship collisions. These and many other applications show that a structural health monitoring program is a powerful tool for structural damage and condition assessment, that can be used as part of a comprehensive decision-making process about possible actions that can be undertaken in a large-scale civil infrastructure system after potentially damaging events.

The needs for advanced sensor technologies in risk assessment of civil infrastructures

  • Fujino, Yozo;Siringoringo, Dionysius M.;Abe, Masato
    • Smart Structures and Systems
    • /
    • 제5권2호
    • /
    • pp.173-191
    • /
    • 2009
  • Civil infrastructures are always subjected to various types of hazard and deterioration. These conditions require systematic efforts to assess the exposure and vulnerability of infrastructure, as well as producing strategic countermeasures to reduce the risks. This paper describes the needs for and concept of advanced sensor technologies for risk assessment of civil infrastructure in Japan. Backgrounds of the infrastructure problems such as natural disasters, difficult environment, limited resource for maintenance, and increasing requirement for safety are discussed. The paper presents a concept of risk assessment, which is defined as a combination of hazard and structural vulnerability assessment. An overview of current practices and research activities toward implementing the concept is presented. This includes implementation of structural health monitoring (SHM) systems for environment and natural disaster prevention, improvement of stock management, and prevention of structural failure.

Sensor enriched infrastructure system

  • Wang, Ming L.;Yim, Jinsuk
    • Smart Structures and Systems
    • /
    • 제6권3호
    • /
    • pp.309-333
    • /
    • 2010
  • Civil infrastructure, in both its construction and maintenance, represents the largest societal investment in this country, outside of the health care industry. Despite being the lifeline of US commerce, civil infrastructure has scarcely benefited from the latest sensor technological advances. Our future should focus on harnessing these technologies to enhance the robustness, longevity and economic viability of this vast, societal investment, in light of inherent uncertainties and their exposure to service and even extreme loadings. One of the principal means of insuring the robustness and longevity of infrastructure is to strategically deploy smart sensors in them. Therefore, the objective is to develop novel, durable, smart sensors that are especially applicable to major infrastructure and the facilities to validate their reliability and long-term functionality. In some cases, this implies the development of new sensing elements themselves, while in other cases involves innovative packaging and use of existing sensor technologies. In either case, a parallel focus will be the integration and networking of these smart sensing elements for reliable data acquisition, transmission, and fusion, within a decision-making framework targeting efficient management and maintenance of infrastructure systems. In this paper, prudent and viable sensor and health monitoring technologies have been developed and used in several large structural systems. Discussion will also include several practical bridge health monitoring applications including their design, construction, and operation of the systems.

Infrastructure Component Assessment Using the Condition Index System: Literature Review and Discussion

  • Amani, Nima;Nasly, M.A.;Samat, Roslida Abd
    • Journal of Construction Engineering and Project Management
    • /
    • 제2권1호
    • /
    • pp.27-34
    • /
    • 2012
  • Recent requirements in component management of building systems have focused on the requirement for improving methods and metric tools to support component condition assessment and appropriate decisions for infrastructure owned facilities. Although engineers and researchers have focused on developing methodologies for component assessment in recent years but there is not enough attention dedicate to facilities and components that have been constructed. This paper is a literature study of scientific papers within the topic of component condition index system (CCIS) in the period 1976 to 2009. Infrastructure component condition index had existed for some 40 years. The purpose of this paper is to provide an overview of CCIS to identify the suitable method for component condition assessment during its service life. This paper finds that the focus of CCIS, surveyed in several aspects during the 40 years that have been investigated, from technology to measurement and from assessment function to component maintenance as an integrated part of the infrastructure component management. This study offers help to researchers in understanding the selection of an appropriate method for component condition assessment in building and non-building systems.

A NoSQL data management infrastructure for bridge monitoring

  • Jeong, Seongwoon;Zhang, Yilan;O'Connor, Sean;Lynch, Jerome P.;Sohn, Hoon;Law, Kincho H.
    • Smart Structures and Systems
    • /
    • 제17권4호
    • /
    • pp.669-690
    • /
    • 2016
  • Advances in sensor technologies have led to the instrumentation of sensor networks for bridge monitoring and management. For a dense sensor network, enormous amount of sensor data are collected. The data need to be managed, processed, and interpreted. Data management issues are of prime importance for a bridge management system. This paper describes a data management infrastructure for bridge monitoring applications. Specifically, NoSQL database systems such as MongoDB and Apache Cassandra are employed to handle time-series data as well the unstructured bridge information model data. Standard XML-based modeling languages such as OpenBrIM and SensorML are adopted to manage semantically meaningful data and to support interoperability. Data interoperability and integration among different components of a bridge monitoring system that includes on-site computers, a central server, local computing platforms, and mobile devices are illustrated. The data management framework is demonstrated using the data collected from the wireless sensor network installed on the Telegraph Road Bridge, Monroe, MI.

System dynamics simulation of the thermal dynamic processes in nuclear power plants

  • El-Sefy, Mohamed;Ezzeldin, Mohamed;El-Dakhakhni, Wael;Wiebe, Lydell;Nagasaki, Shinya
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1540-1553
    • /
    • 2019
  • A nuclear power plant (NPP) is a highly complex system-of-systems as manifested through its internal systems interdependence. The negative impact of such interdependence was demonstrated through the 2011 Fukushima Daiichi nuclear disaster. As such, there is a critical need for new strategies to overcome the limitations of current risk assessment techniques (e.g. the use of static event and fault tree schemes), particularly through simulation of the nonlinear dynamic feedback mechanisms between the different NPP systems/components. As the first and key step towards developing an integrated NPP dynamic probabilistic risk assessment platform that can account for such feedback mechanisms, the current study adopts a system dynamics simulation approach to model the thermal dynamic processes in: the reactor core; the secondary coolant system; and the pressurized water reactor. The reactor core and secondary coolant system parameters used to develop system dynamics models are based on those of the Palo Verde Nuclear Generating Station. These three system dynamics models are subsequently validated, using results from published work, under different system perturbations including the change in reactivity, the steam valve coefficient, the primary coolant flow, and others. Moving forward, the developed system dynamics models can be integrated with other interacting processes within a NPP to form the basis of a dynamic system-level (systemic) risk assessment tool.

Evaluating Sustainability Rating System for California Infrastructure Construction Projects

  • McCarthy, Patricia;Kim, Joseph J.
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.984-991
    • /
    • 2022
  • The use of the sustainability rating systems in infrastructure construction projects is not as common in comparison to building construction projects. While the sustainability rating systems share some commonalities, they differ from one another in certain ways. Thus, project teams cannot make reliable decisions when choosing the best sustainability rating tools for a given infrastructure projects. The Department of Transportation (DOT) in several states are developing its own rating system to address the infrastructure sustainability, but not in the case of California. Therefore, this paper presents the statistical results on the important sustainability determinants that affects the success of meeting sustainability goals of infrastructure construction projects. The authors conducted an online survey using the structured questionnaires. The categories considered include site, water/wastewater, energy, materials/resources, environmental, and others. The statistical analyses such as Kruskal-Wallis and ANOVA are conducted using a total of 25 valid and complete data out of 59 surveys collected. The results demonstrate several factors under each of six major sustainable categories have received higher ranks than other factors. The results also show that a statistically significant difference can be found from water, energy, and environmental categories against the other category based on the pairwise comparisons.

  • PDF

분산형 물 인프라의 도시 하수관리 시스템 도입을 위한 기술적 발전방안 (Technical Advancements Needed for the Introduction of Distributed Water Infrastructure to Urban Wastewater Management Systems)

  • 최용주;이우람
    • 한국물환경학회지
    • /
    • 제39권1호
    • /
    • pp.76-86
    • /
    • 2023
  • We are on the verge of paradigm shift for the design and operation of our urban water systems from treatment- and efficiency-based to recirculation- and sustainability-based. One of the most frequently suggested alternatives to embody this paradigm shift is to decentralize the currently highly centralized urban water infrastructure. However, claims for water infrastructure decentralization are often criticized due to poor economic feasibility, unstable performance, and unprofessional operation and maintenance. The current study critically reviews the literature to discuss the technical advancement needs to overcome such challenges. Firstly, decentralized water infrastructure was briefly defined and the rationale for the proposal of its introduction to the next-generation urban water systems was laid down. The main discussion focused on the following water technologies, which require special attention when working with decentralized water infrastructure: i) material collection, storage, and transport; ii) easily scalable water treatment; iii) sensor, information, and communications; and iv) system optimization. The principles, current development status, and challenges were discussed for each of the water technologies. The discussion on the water technologies has enabled the identification of future research needs for their application to the next-generation urban water systems which will be designed following decentralized water infrastructure. This paper will significantly improve the current understanding on water infrastructure decentralization and provides insight on future direction of water technology development.

Toward a paradigm for civil structural control

  • Casciati, S.;Chassiakos, A.G.;Masri, S.F.
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.981-1004
    • /
    • 2014
  • Structural control is a very broad field combining the areas of automatic control and structural engineering, with applications ranging from aerospace and mechanical engineering to building and civil infrastructure systems. In this paper, the focus is placed on civil engineering applications only. The goal is to address the issues concurring to form the scientific paradigm. As a resut, possible future directions of research into this field are identified.