• 제목/요약/키워드: civil engineering structures

검색결과 8,366건 처리시간 0.036초

Dynamic analysis method for the progressive collapse of long-span spatial grid structures

  • Tian, Li-min;Wei, Jian-peng;Hao, Ji-ping;Wang, Xian-tie
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.435-444
    • /
    • 2017
  • In the past, the progressive collapse resulting from local failures during accidents has caused many tragedies and loss of life. Although long-span spatial grid structures are characterised by a high degree of static indeterminacy, the sudden failure of key members may lead to a catastrophic progressive collapse. For this reason, it is especially necessary to research the progressive collapse resistance capacity of long-span spatial grid structures. This paper presents an evaluation method of important members and a novel dynamic analysis method for simulating the progressive collapse of long-span spatial grid structures. Engineering cases were analysed to validate these proposed method. These proposed methods were eventually implemented in the progressive collapse analysis of the main stadium for the Universiade Sports Center. The roof of the structure was concluded to have good resistance against progressive collapse. The novel methods provide results close to practice and are especially suitable for the progressive collapse analysis of long-span spatial grid structures.

Semiactive Control Systems Using MR Fluid Dampers in Civil Engineering Applications: a State-of-the Art Review (토목공학에서의 자기유변 유체 감쇠기를 이용한 반능동 제어 시스템: 최신 연구 동향)

  • 정형조;박규식;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.467-474
    • /
    • 2002
  • Semiactive control systems have received considerable attention for protecting structures against natural hazards such as strong earthquakes and high winds, because they not only offer the reliability of passive control systems but also maintain the versatility and adaptability of fully active control systems. Among the many semiactive control devices, magnetorheological (MR) fluid dampers comprise one particularly promising class. In the field of civil engineering, much research and development on MR fluid damper-based control systems has been conducted since B. F. Spencer first introduced this unique semiactive device to civil engineering applications in mid 1990s. In 2001, MR fluid dampers were applied to the full-scale in-service civil engineering structures for the first time. This state-of-the-art paper includes a detailed literature review of control algorithms considering the characteristics of fm fluid dampers. This review provides references to semiactive control systems using MR fluid dampers. The MR fluid damper-based semiactive control systems are shown to have the potential for mitigating the responses of full-scale civil engineering structures under natural hazards.

  • PDF

Bolted joints for single-layer structures: numerical analysis of the bending behaviour

  • Lopez-Arancibia, A.;Altuna-Zugasti, A.M.;Aldasoro, H. Aizpurua;Pradera-Mallabiabarrena, A.
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.355-367
    • /
    • 2015
  • This paper deals with a new designed joint system for single-layer spatial structures. As the stability of these structures is greatly influenced by the joint behaviour, the aim of this paper is the characterization of the joint response in bending through Finite Element Method (FEM) analysis using ABAQUS. The behaviour of the joints studied here was influenced by many geometrical factors, such as bolts and plate sizes, distance between bolts and end-plate thickness. The study comprised five models of joints with different values of those parameters. The numerical results were compared to the results of previous experimental tests and the agreement was good enough. The differences between the numerical and experimental initial stiffness are attributed to the simplifications introduced when modelling the bolt threads as well as the presence of residual stresses in the test specimens.

Reliability analysis of double-layer domes with stochastic geometric imperfections

  • Gordini, Mehrdad;Habibi, Mohammad Reza;Sheidaii, Mohammad Reza;Tahamouliroudsari, Mehrzad
    • Advances in Computational Design
    • /
    • 제2권2호
    • /
    • pp.133-146
    • /
    • 2017
  • This study aimed to investigate the effect of initial member length an imperfection in the load carrying capacity of double-layer domes space structures. First, for the member length imperfection of each member, a random number is generated from a normal distribution. Thereupon, the amount of the imperfection randomly varies from one member to another. Afterwards, based on the Push Down analysis, the collapse behavior and the ultimate capacity of the considered structure is determined using nonlinear analysis performed by the OpenSees software and this procedure is repeated numerous times by Monte Carlo simulation method. Finally, the reliability of structures is determined. The results show that the collapse behavior of double-layer domes space structures is highly sensitive to the random distribution of initial imperfections.

Reliability analysis of tunnels with consideration of the earthquakes extreme events

  • Azadi, Mohammad;Ghasemi, S. Hooman;Mohammadi, Mohammadreza
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.433-439
    • /
    • 2020
  • Tunnels are one of the most important constructions in civil engineering. The damage to these structures caused enormous costs. Therefore, the safe and economic design of these structures has long been considered. However, both applied loads on the tunnels as well as the resistance of the structural members are naturally uncertain parameters, hence, the design of these structures requires considering the probabilistic approaches. This study aims to determine the load and resistant factors of lining tunnels concerning the earthquake extreme events limit state function. For this purpose, tunnels that have been designed according to the previous design codes (AASHTO Tunnel LRFD 2017) and using reliability analysis, the optimum reliability of these structures for different loading scenarios is determined. In this paper, the tunnel is considered circular. Finally, the proper load and resistance factors are calculated corresponding to the obtained target reliability. Based on the performed calibration earthquake extreme events limit state function, the result of this study can be recommended to AASHTO Tunnel LRFD 2017.

LSTM-based aerodynamic force modeling for unsteady flows around structures

  • Shijie Liu;Zhen Zhang;Xue Zhou;Qingkuan Liu
    • Wind and Structures
    • /
    • 제38권2호
    • /
    • pp.147-160
    • /
    • 2024
  • The aerodynamic force is a significant component that influences the stability and safety of structures. It has unstable properties and depends on computer precision, making its long-term prediction challenging. Accurately estimating the aerodynamic traits of structures is critical for structural design and vibration control. This paper establishes an unsteady aerodynamic time series prediction model using Long Short-Term Memory (LSTM) network. The unsteady aerodynamic force under varied Reynolds number and angles of attack is predicted by the LSTM model. The input of the model is the aerodynamic coefficients of the 1 to n sample points and output is the aerodynamic coefficients of the n+1 sample point. The model is predicted by interpolation and extrapolation utilizing Unsteady Reynolds-average Navier-Stokes (URANS) simulation data of flow around a circular cylinder, square cylinder and airfoil. The results illustrate that the trajectories of the LSTM prediction results and URANS outcomes are largely consistent with time. The mean relative error between the forecast results and the original results is less than 6%. Therefore, our technique has a prospective application in unsteady aerodynamic force prediction of structures and can give technical assistance for engineering applications.

Development of a dynamic sensing system for civil revolving structures and its field tests in a large revolving auditorium

  • Luo, Yaozhi;Yang, Pengcheng;Shen, Yanbin;Yu, Feng;Zhong, Zhouneng;Hong, Jiangbo
    • Smart Structures and Systems
    • /
    • 제13권6호
    • /
    • pp.993-1014
    • /
    • 2014
  • In civil engineering, revolving structures (RS) are a unique structural form applied in innovative architecture design. Such structures are able to revolve around themselves or along a certain track. However, few studies are dedicated to safety design or health monitoring of RS. In this paper, a wireless dynamic sensing system is developed for RS, and field tests toward a large revolving auditorium are conducted accordingly. At first, a wheel-rail problem is proposed: The internal force redistributes in RS, which is due to wheel-rail irregularity. Then the development of the sensing system for RS is presented. It includes system architecture, network organization, vibrating wire sensor (VWS) nodes and online remote control. To keep the sensor network identifiable during revolving, the addresses of sensor nodes are reassigned dynamically when RS position changes. At last, the system is mounted on a huge outdoor revolving auditorium. Considering the influence of the proposed problem, the RS of the auditorium has been designed conservatively. Two field tests are conducted via the sensing system. In the first test, 2000 people are invited to act as the live load. During the revolving process, data is collected from RS in three different load cases. The other test is the online monitoring for the auditorium during the official performances. In the end, the field-testing result verifies the existence of the wheel-rail problem. The result also indicates the dynamic sensing system is applicable and durable even while RS is rotating.

A new equivalent friction element for analysis of cable supported structures

  • Yan, Renzhang;Chen, Zhihua;Wang, Xiaodun;Liu, Hongbo;Xiao, Xiao
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.947-970
    • /
    • 2015
  • An equivalent friction element is proposed to simulate the friction in cable-strut joints. Equivalent stiffness matrixes and load vectors of the friction element are derived and are unified into patterns for FEM by defining a virtual node specially to store internal forces. Three approaches are described to verify the rationality of the new equivalent friction element: applying the new element in a cable-roller model, and numerical solutions match well with experimental results; applying the element in a continuous sliding cable model, and theoretical values, numerical and experimental results are compared; and the last is applying it in truss string structures, whose results indicate that there would be a great error if the cable of cable supported structures is simulated with discontinuous cable model which is usually adopted in traditional finite element analysis, and that the prestress loss resulted from the friction in cable-strut joints would have adverse effect on the mechanical performance of cable supported structures.

Investigations on the influence of radial confinement in the impact response of concrete

  • Al-Salloum, Yousef;Alsayed, Saleh;Almusallam, Tarek;Ibrahim, S.M.;Abbas, H.
    • Computers and Concrete
    • /
    • 제14권6호
    • /
    • pp.675-694
    • /
    • 2014
  • Annular and solid concrete specimens with different aspect ratios and static unconfined compressive strengths were studied for impact loading using SHPB test setup. Numerical simulations in LSDYNA were also carried out and results were validated. The stress-strain curves obtained under dynamic loading were also compared with static compressive tests. The mode of failure of concrete specimen was a typical ductile failure at high strain rates. In general, the dynamic increase factor (DIF) of thin solid specimens was higher than thick samples. In the numerical study, the variation of axial, hydrostatic and radial stresses for solid and annular samples was studied. The core phenomenon due to confinement was observed for solid samples wherein the applied loads were primarily borne by the innermost concrete zone rather than the outer peripheral zone. In the annular samples, especially with large diameter inside hole, the distribution of stresses was relatively uniform along the radial distance. Qualitatively, only a small change in the distribution of stresses for annular samples with different internal diameters studied was observed.

Blast analysis of concrete arch structures for FRP retrofitting design

  • Nam, Jin-Won;Kim, Ho-Jin;Yi, Na-Hyun;Kim, In-Soon;Kim, Jang-Ho Jay;Choi, Hyung-Jin
    • Computers and Concrete
    • /
    • 제6권4호
    • /
    • pp.305-318
    • /
    • 2009
  • Fiber Reinforced Polymer (FRP) is widely used for retrofitting concrete structures for various purposes. Especially, for the retrofitting of concrete structures subjected to blast loads, FRP is proven to be a very effective retrofitting material. However, a systematic design procedure to implement FRP for concrete structure retrofitting against blast loads does not exist currently. In addition, in case of concrete structures with inarticulate geometrical boundary conditions such as arch structures, an effective analysis technique is needed to obtain reliable results based on minimal analytical assumptions. Therefore, in this study, a systematic and efficient blast analysis procedure for FRP retrofitting design of concrete arch structure is suggested. The procedure is composed of three sequential parts of preliminary analysis, breach and debris analysis, and retrofit-material analysis. Based on the suggested procedure, blast analyses are carried out by using explicit code, LS-DYNA. The study results are discussed in detail.