• 제목/요약/키워드: citral b

검색결과 4건 처리시간 0.015초

Angelica속 생약의 정유성분에 관한 연구(IV) -강활의 정유성분- (Studies on Essential Oils of Plants of Angelica Genus in Korea (IV) -Essential Oils of Angelicae koreanae Radix-)

  • 지형준;김현수
    • 생약학회지
    • /
    • 제24권2호
    • /
    • pp.111-115
    • /
    • 1993
  • Essential oil of the root of Angelica koreana Max. (Umbelliferae) was investigated. Essential oil was obtained from the dried roots by steam distillation and fractionated by column chromatography. Each isolate or fraction was identified by GC, GC-MS and spectral analysis. It was found to contain nine monoterpenes such as ${\alpha}-pinene$(7.0%), camphene, ${\beta}-pinene$, myrcene, ${\alpha}-phellandrene$, ${\Delta}-3-carene$, p-cymene, limonene(2.8%), terpinolene and also found to contain m-cresol(11.6%), citronellol, citral b, methylcinnamate, eudesmol and osthol. 2-Hydroxy-5-methylacetophenone and twelve compounds were tentatively identified.

  • PDF

Evaluation of Herbicidal Potential of Essential Oils and their Components under In vitro and Greenhouse Experiments

  • Choi, Hae-Jin;Sowndhararajan, Kandhasamy;Cho, Nam-Gyu;Hwang, Ki-Hwan;Koo, Suk-Jin;Kim, Songmun
    • Weed & Turfgrass Science
    • /
    • 제4권4호
    • /
    • pp.321-329
    • /
    • 2015
  • The present study aimed to evaluate the phytotoxic potential of essential oils. For this purpose, 18 essential oil samples extracted from Korean plants and 64 commercial essential oils were screened for their phytotoxic potential against the seedling growth of Brassica napus L. (rapeseed). Among the 82 samples, 11 commercial oils (cinnamon, citronella, clove, cumin seed, geranium, jasmine, lemongrass, palmarosa, pimento, rose otto and spearmint) strongly inhibited the seedling growth with $GR_{50}$ value < $150{\mu}g\;mL^{-1}$. Major components from these effective essential oils were identified by solid phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS). GC-MS analyses revealed that the effective samples mainly consist of benzyl benzoate, carvone, citral, citronellol, eugenol, geraniol, D-limonene and terpinene. Subsequently, bioactivity of these individual components was evaluated against the seedling growth of B. napus, Echinochloa crus-galli and Aeschynomene indica. The components from different chemical groups exhibited different potency in inhibiting the seedling growth with varied $GR_{50}$ values ranged from $29{\mu}g\;mL^{-1}$ to > $1000{\mu}g\;mL^{-1}$. In the greenhouse experiment, citral and geraniol completely suppressed the growth of all the tested 10 plants at $100kg\;ha^{-1}$. In conclusion, the individual essential oil components geraniol and citral could be used as natural herbicides for weed management.

In vitro Screening of Essential Oil Active Compounds for Manipulation of Rumen Fermentation and Methane Mitigation

  • Joch, M.;Cermak, L.;Hakl, J.;Hucko, B.;Duskova, D.;Marounek, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권7호
    • /
    • pp.952-959
    • /
    • 2016
  • The objective of this study was to investigate the effects of 11 active compounds of essential oils (ACEO) on rumen fermentation characteristics and methane production. Two trials were conducted. In trial 1, ACEO (eugenol, carvacrol, citral, limonene, 1,4-cineole, p-cymene, linalool, bornyl acetate, ${\alpha}$-pinene, and ${\beta}$-pinene) at a dose of $1,000{\mu}L/L$ were incubated for 24 h in diluted rumen fluid with a 70:30 forage:concentrate substrate (16.2% crude protein; 36.6% neutral detergent fiber). Three fistulated Holstein cows were used as donors of rumen fluid. The reduction in methane production was observed with nine ACEO (up to 86% reduction) compared with the control (p<0.05). Among these, only limonene, 1,4-cineole, bornyl acetate, and ${\alpha}$-pinene did not inhibit volatile fatty acid (VFA) production, and only bornyl acetate produced less methane per mol of VFA compared with the control (p<0.05). In a subsequent trial, the effects on rumen fermentation and methane production of two concentrations (500 and $2,000{\mu}L/L$) of bornyl acetate, the most promising ACEO from the first trial, were evaluated using the same in vitro incubation method that was used in the first trial. In trial 2, monensin was used as a positive control. Both doses of bornyl acetate decreased (p<0.05) methane production and did not inhibit VFA production. Positive effects of bornyl acetate on methane and VFA production were more pronounced than the effects of monensin. These results confirm the ability of bornyl acetate to decrease methane production, which may help to improve the efficiency of energy use in the rumen.

Chemical Pesticides and Plant Essential Oils for Disease Control of Tomato Bacterial Wilt

  • Lee, Young-Hee;Choi, Chang-Won;Kim, Seong-Hwan;Yun, Jae-Gill;Chang, Seog-Won;Kim, Young-Shik;Hong, Jeum-Kyu
    • The Plant Pathology Journal
    • /
    • 제28권1호
    • /
    • pp.32-39
    • /
    • 2012
  • Efficacy of different control methods was evaluated for disease management of tomato bacterial wilt caused by $Ralstonia$ $solanacearum$. All six chemical pesticides applied to the bacterial suspension showed $in$ $vitro$ bactericidal activities against $R.$ $solanacearum$. Minimal inhibitory concentrations (MICs) of copper hydroxide (CH), copper hydroxide-oxadixyl mixture (CH+O), and copper oxychloride-dithianon mixture (CO+D) were all 200 ${\mu}g/ml$; MIC of copper oxychloride-kasugamycin (CO+K) mixture was 100 ${\mu}g/ml$; MICs of both streptomycin- validamycin (S+V) and oxine copper-polyoxine B mixture (OC+PB) were 10 ${\mu}g/ml$. Among these chemical pesticides, treatment of the detached tomato leaves with the 5 pesticides (1 mg/ml), except for OC+PB delayed early wilting symptom development caused by the bacterial inoculation ($10^6$ and $10^7$ cfu/ml). Four pesticides, CH, CH+O, CO+K and S+V, showed disease protection in pot analyses. Six plant essential oils, such as cinnamon oil, citral, clove oil, eugenol, geraniol and limonene, differentially showed their antibacterial activities $in$ $vitro$ against $R.$ $solanacearum$ demonstrated by paper disc assay. Among those, cinnamon oil and clove oil exert the most effective activity for protection from the wilt disease caused by the bacterial infection ($10^6$ cfu/ml). Treatment with cinnamon oil and clove oil also suppressed bacterial disease by a higher inoculum concentration ($10^7$ cfu/ml). Clove oil could be used for prevention of bacterial wilt disease of tomato plants without any phytotoxicity. Thus, we suggest that copper compounds, antibiotics and essential oils have potency as a controlling agent of tomato bacterial wilt.