• Title/Summary/Keyword: cis-muconic acid

Search Result 3, Processing Time 0.015 seconds

Production of cis, cis-Muconic Acid from Benzoic Acid via Microbial Transformation

  • SangGu Bang;Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.36-40
    • /
    • 1996
  • For the production of cis, cis-muconic acid via biocatalytic conversion reactions from a toxic cosubstrate, benzoic acid, a fed-batch process using computer-controlled DO-stat feeding was developed. The mutant strain of Pseudomonas putida BM014 produced cis, cis-muconic acid from benzoic acid with high conversion yield. More than 32 g/L of cis, cis-muconic acid was accumulated in 42h and a productivity of 1.4g/(L.h)was achieved.

  • PDF

Characterization of Benzoate Degradation via ortho-Cleavage by Streptomyces setonii

  • An, Hae-Reun;Park, Hyun-Joo;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.111-114
    • /
    • 2000
  • Streptomyces are widespread in nature and play a very important role in the biosynthesis as well as biodegradation of natural and unnatural aromatic compounds. Both qualitatively and quantitatively through TLC and UV spectrophotometric assays, it was observed that the thermophilic soil bacteria S. setonii (ATCC 39116), which can utilize a benzoate as a sole carbon and energy source in a minimal liquid culture, was not very sensitive to the benzoate concentation and to the culture conditions such as the pH and temperature. The in vitro conversion of a catechol to a cis, cis-muconic acid by a crude S. setonii lysate implies that the aromatic ring cleavage by S. setonii is initiated by a thermostable catechol-1,2-dioxygenase, the key enzyme in the ortho-cleavage pathway of aromatic compound biodegradation. Unlike non-degrading S. lividans, S.setonii was also highly resistant to other similar hazardous aromatic compounds, exhibiting almost no adverse effect on its growth in a complex liquid culture.

  • PDF

Physiological and Phylogenetic Analysis of Burkholderia sp. HY1 Capable of Aniline Degradation

  • Kahng, Hyung-Yeel;Jerome J. Kukor;Oh, Kye-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.643-650
    • /
    • 2000
  • A new aniline-utilizing microorganism, strain HY1 obtained from an orchard soil, was characterized by using the BIOLOG system, an analysis of the total cellular fatty acids, and a 16S rDNA sequence. Strain HY1 was identified as a Burkholderia species, and was designated Burkholderia sp. HY1. GC and HPLC analyses revealed that Burkholderia sp. HY1 was able to degrade aniline to produce catechol, which was subsequently converted to cis,cis-muconic acid through an ortho-ring fission pathway under aerobic conditions. Strain HY1 exhibited a drastic reduction in the rate of aniline degradation when glucose was added to the aniline media. However, the addition of peptone or nitrate to the aniline media dramatically accelerated the rate of aniline degradation. A fatty acid analysis showed that strain HY1 was able to produce lipids 16:0 2OH, and 11 methyl 18:1 ${\omega}7c$ approximately 3.7-, 2.2-, and 6-fold more, respectively, when grown on aniline media than when grown on TSA. An analysison the alignment of a 1,435 bp fragment. A phylogenetic analysis of the 16S rDNA sequence based on a 1,420 bp multi-alignment sowed of the 16s rDNA sequence revealed that strain HY1 was very closely related to Burkholderia graminis with 95% similarity based that strain HY1 was placed among three major clonal types of $\beta$-Proteobacteria, including Burkholderia graminis, Burkholderia phenazinium, and Burkholderia glathei. The sequence GAT(C or G)${\b{G}}$, which is highly conserved in several locations in the 16S rDNA gene among the major clonal type strains of $\beta$-Proteobacteria, was frequently replaced with GAT(C or G)${\b{A}}$ in the 16S rDNA sequence from strain HY1.

  • PDF