• Title/Summary/Keyword: cis-V Conformation

Search Result 5, Processing Time 0.02 seconds

Cr(III)-Tetraaza Macrocyclic Complexes Containing Auxiliary Ligands (Part I); Synthesis and Characterization of Cr(III)-Benzoato and Chlorobenzoato Macrocyclic Complexes

  • Byun, Jong-Chul;Kim, Goo-Cheul;Han, Chung-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.977-982
    • /
    • 2004
  • The reaction of $cis-[Cr([14]-decane)(OH_2)_2]^+$ ([14]-decane = rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-teraazacyclotetradecane) with auxiliary ligands {$L_a$ = benzoate(bz) or chlorobenzoate(cbz)} leads to a new compound $[Cr([14]-decane)(bz)_2]ClO_4$ or $[Cr([14]-decane)(cbz)_2]ClO_4$. These complexes have been characterized by a combination of elemental analysis, conductivity, IR and Vis spectroscopy, mass spectrometry, and X-ray crystallography. The crystal structure of $[Cr([14]-decane)(cbz)_2]^+$ was determined. The complex shows a distorted octahedral coordination environment with the macrocycle adopting a folded cis-V conformation. The angle $N_{axial}-Cr-N_{axial}$ deviates by $14.5^{\circ}$ from the ideal value of $180^{\circ}$for a perfect octahedron. The bond angle cis-O-Cr-O between the Cr(III) ion and the two carboxylate oxygen atoms of the monodentate p-chlorobenzoate ligands is close to 90$^{\circ}$. The FAB mass spectra of the $cis-[Cr([14]-decane)(La)_2]ClO_4$ display peaks due to the molecular ions $[Cr([14]-decane)(bz)_2-H]^\;,\;[Cr([14]-decane)(cbz)_2-2H]^$ at m/z 578, 646, respectively.

Crystal Structure of cis-(Malonato)[(4R,5R)-4,5-bis(Aminomethyl)-2-Isopropyl-1,3-Dioxolane]Platinum(II), A Potent Anticancer Agent

  • Cho, Sang-Woo;Yongkee Cho;Kim, Dai-Kee;Wanchul Shin
    • Korean Journal of Crystallography
    • /
    • v.11 no.1
    • /
    • pp.22-27
    • /
    • 2000
  • The structure of cis-(malonato)[(4R,5R)-4,5-bis(aminomethyl)-2-isopropyl-1,3-dioxolane]platinum(II) with a potent anticancer activity has been determined by the X-ray crystallographic method. Crystal data are as follows: Pt(C/sub 11/H/sub 20/N₂O/sub 6/), M/sub 4/=471.38, monoclinic, P2₁, a=7.112(1), b=33.615(3), c=7.135(1)Å, β=116.80(1)°, V=1522.6(3)Å, and Z=4. The two independent molecules with very similar structures are approximately related by pseudo two-fold screw axis symmetry, which makes the monolinic cell look like the orthorhombic cell with one molecule in the asymmetric unit and space group C222₁. The crystal packing mode is similar to that of the analogue with the dimethyl substituents instead of the isopropyl group. The Pt atom is coordinate to two O and two N atoms in a square planar structure. The six-membered chelate ring in the leaving ligand assumes a conformation intermediate between the half chair and the boat forms. The seven-membered ring in the carrier ligand assumes a twist-chair conformation and the oxolane ring assumes an envelope conformation. Crystal packing consists of the extensive hydrogen-bonding network in the two-dimensional molecular layers and weak van der Waals interactions between these layers.

  • PDF

Preparation and crystal structure of azido bridged one-dimensional polymeric cadmium(II) complex, [Cd(N3)2(2-ethylimidazole)2]

  • Suh, Seung Wook;Kim, Inn Hoe;Kim, Chong-Hyeak
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.391-395
    • /
    • 2005
  • The title complex, $[Cd(N_3)_2(2-ethylimidazole)_2]$, I, has been prepared and characterized by X-ray single crystallography. The complex I crystallizes in the monoclinic system, Cc space group with a = 16.200(3), b = 12.926(3), $c=7.007(1){\AA}$, ${\beta}=102.29(3)^{\circ}$, $V=1433.7(5){\AA}^3$, Z = 4, $R_1=0.0239$ and ${\omega}R_2=0.0604$ for 1874 independent reflections. Cd(II) atom has a slightly distorted octahedral coordination geometry, with four end-on (${\mu}-1$,1) bridging azido ligands and two 2-ethylimidazole ligands bonding through nitrogen atom. The central cadmium(II) atoms are run in parallel to the c-axis and are doubly bridged with neighboring cadmium(II) atoms by the end-on (${\mu}-1$,1) bridging azido ligands. Thus, this complex has a one-dimensional zigzag chain structure in which the 2-ethylimidazole is in the cis conformation.

Effects of Diet and Time on Feed on Fatty Acid Composition in Muscle of Charolais Steers (사료급원과 급여기간이 Charolais 거세우 근내 지방산 조성에 미치는 영향)

  • 최낙진;강수원;권응기;조원모;전병수;박병기
    • Journal of Animal Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.847-860
    • /
    • 2006
  • This study investigated the effects of feeding Charolais steers on diets rich in either n-6 or n-3 polyunsaturated fatty acids (PUFA) and time on feed (TOF) on muscle fatty acid composition and content. Twenty eight steers were fed on ad libitum forage and one of two concentrates varying in the source of fat; soya (high in C18:2 n-6) or whole linseed (high in C18:3 n-3) for either 60 or 90 days in IGER (Institute of Grassland and Environmental Research, UK). The concentrates were fed at approximately 0.73 of total DM intake. TOF influenced carcass weight, conformation and fatness scores, which were higher at 90 v. 60 days (P<0.05). Diet did not affect total fatty acid content of neutral lipid in m. longissimus thoracis but feeding linseed increased total phospholipid fatty acid by approx- imately 15%(P<0.05). Linseed increased the amount and proportion of C18:3 n-3 (P<0.001) and the proportion of CLA (cis-9, trans-11 conjugated linoleic acid), while soya increased the content (P<0.05) and proportion (P<0.001) of C18:2 n-6 in muscle neutral lipid. In muscle phospholipid, linseed significantly increased the amount of CLA, C18:3 n-3 and its longer chain derivatives as well as C14:0, C16:0, C18:0. C18:1 trans and C18:2 n-6. The amount and proportion of C18:2 n-6 and its longer chain C20 derivatives were higher on feeding soya. TOF (90 v. 60 day) increased the content of C14:0, C16:0, C16:1, CLA, C18:1 n-9, C18:2 n-6 and C18:3 n-3 in muscle neutral lipid. The P:S was not affected by diet or TOF. The ratio of C18:2 n-6 : C18:3 n-3 and sum of n-6 : n-3 fatty acids were higher in muscle from animals fed on linseed v. soya (P<0.001). The study indicates that the PUFA composition of beef muscle may be significantly modified by feeding contrasting dietary lipids, soya vs. linseed. Feeding linseed produced a better balance of muscle fatty acids, more in line with current nutritional recommendations with a lower C18:2 n-6:C18:3 n-3 ratio associated with higher muscle content of C18:3 n-3 and C20:5 n-3 and CLA and lower C20:4 n-6.